parent
7d487e3441
commit
0b3f5f7d06
src/deepke/relation_extraction/few-shot
lit_models
logs
models
__init__.py
bert
electra
__init__.pyconfiguration_electra.pyconvert_electra_original_tf_checkpoint_to_pytorch.pymodeling_electra.pymodeling_flax_electra.pymodeling_tf_electra.pytokenization_electra.pytokenization_electra_fast.py
gpt2
__init__.pyconfiguration_gpt2.pyconvert_gpt2_original_tf_checkpoint_to_pytorch.pymodeling_gpt2.pymodeling_tf_gpt2.pytokenization_gpt2.pytokenization_gpt2_fast.py
roberta
|
@ -0,0 +1,2 @@
|
|||
from .transformer import *
|
||||
from .base import BaseLitModel
|
|
@ -0,0 +1,122 @@
|
|||
import argparse
|
||||
import torch
|
||||
|
||||
|
||||
from transformers.optimization import get_linear_schedule_with_warmup
|
||||
from torch import nn
|
||||
|
||||
OPTIMIZER = "AdamW"
|
||||
LR = 5e-5
|
||||
LOSS = "cross_entropy"
|
||||
ONE_CYCLE_TOTAL_STEPS = 100
|
||||
|
||||
class Config(dict):
|
||||
def __getattr__(self, name):
|
||||
return self.get(name)
|
||||
|
||||
def __setattr__(self, name, val):
|
||||
self[name] = val
|
||||
|
||||
|
||||
class BaseLitModel(nn.Module):
|
||||
"""
|
||||
Generic PyTorch-Lightning class that must be initialized with a PyTorch module.
|
||||
"""
|
||||
|
||||
def __init__(self, model, args: argparse.Namespace = None, device: torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') = str):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.cur_model = model.module if hasattr(model, 'module') else model
|
||||
self.device = device
|
||||
self.args = Config(vars(args)) if args is not None else {}
|
||||
|
||||
optimizer = self.args.get("optimizer", OPTIMIZER)
|
||||
self.optimizer_class = getattr(torch.optim, optimizer)
|
||||
self.lr = self.args.get("lr", LR)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def add_to_argparse(parser):
|
||||
parser.add_argument("--optimizer", type=str, default=OPTIMIZER, help="optimizer class from torch.optim")
|
||||
parser.add_argument("--lr", type=float, default=LR)
|
||||
parser.add_argument("--weight_decay", type=float, default=0.01)
|
||||
return parser
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = self.optimizer_class(self.parameters(), lr=self.lr)
|
||||
if self.one_cycle_max_lr is None:
|
||||
return optimizer
|
||||
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=self.one_cycle_max_lr, total_steps=self.one_cycle_total_steps)
|
||||
return {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "val_loss"}
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def training_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
x, y = batch
|
||||
x.to(self.device)
|
||||
logits = x
|
||||
loss = (logits - y) ** 2
|
||||
print("train_loss: ", loss)
|
||||
#self.train_acc(logits, y)
|
||||
#self.log("train_acc", self.train_acc, on_step=False, on_epoch=True)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
x, y = batch
|
||||
x.to(self.device)
|
||||
logits = x
|
||||
loss = (logits - y) ** 2
|
||||
print("val_loss: ", loss)
|
||||
|
||||
def test_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
x, y = batch
|
||||
x.to(self.device)
|
||||
logits = x
|
||||
loss = (logits - y) ** 2
|
||||
print("test_loss: ", loss)
|
||||
|
||||
def configure_optimizers(self):
|
||||
no_decay_param = ["bias", "LayerNorm.weight"]
|
||||
|
||||
optimizer_group_parameters = [
|
||||
{"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay_param)], "weight_decay": self.args.weight_decay},
|
||||
{"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay_param)], "weight_decay": 0}
|
||||
]
|
||||
|
||||
|
||||
optimizer = self.optimizer_class(optimizer_group_parameters, lr=self.lr, eps=1e-8)
|
||||
#scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.num_training_steps * 0.1, num_training_steps=self.num_training_steps)
|
||||
return optimizer
|
||||
'''return {
|
||||
"optimizer": optimizer,
|
||||
"lr_scheduler":{
|
||||
'scheduler': scheduler,
|
||||
'interval': 'step', # or 'epoch'
|
||||
'frequency': 1,
|
||||
}
|
||||
}'''
|
||||
|
||||
@property
|
||||
def num_training_steps(self) -> int:
|
||||
"""Total training steps inferred from datamodule and devices."""
|
||||
if isinstance(self.trainer.limit_train_batches, int) and self.trainer.limit_train_batches != 0:
|
||||
dataset_size = self.trainer.limit_train_batches
|
||||
elif isinstance(self.trainer.limit_train_batches, float):
|
||||
# limit_train_batches is a percentage of batches
|
||||
dataset_size = len(self.trainer.datamodule.train_dataloader())
|
||||
dataset_size = int(dataset_size * self.trainer.limit_train_batches)
|
||||
else:
|
||||
dataset_size = len(self.trainer.datamodule.train_dataloader())
|
||||
|
||||
num_devices = max(1, self.trainer.num_gpus, self.trainer.num_processes)
|
||||
if self.trainer.tpu_cores:
|
||||
num_devices = max(num_devices, self.trainer.tpu_cores)
|
||||
|
||||
effective_batch_size = self.trainer.accumulate_grad_batches * num_devices
|
||||
max_estimated_steps = (dataset_size // effective_batch_size) * self.trainer.max_epochs
|
||||
|
||||
if self.trainer.max_steps and self.trainer.max_steps < max_estimated_steps:
|
||||
return self.trainer.max_steps
|
||||
return max_estimated_steps
|
||||
|
|
@ -0,0 +1,571 @@
|
|||
from logging import debug
|
||||
import json
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
# Hide lines below until Lab 5
|
||||
import wandb
|
||||
import numpy as np
|
||||
# Hide lines above until Lab 5
|
||||
|
||||
from .base import BaseLitModel
|
||||
from .util import dialog_f1_eval, f1_eval, compute_f1, acc, f1_score
|
||||
from transformers.optimization import get_linear_schedule_with_warmup
|
||||
|
||||
from functools import partial
|
||||
|
||||
|
||||
def mask_hook(grad_input, st, ed):
|
||||
mask = torch.zeros((grad_input.shape[0], 1)).type_as(grad_input)
|
||||
mask[st: ed] += 1.0 # 只优化id为1~8的token
|
||||
# for the speaker unused token12
|
||||
mask[1:3] += 1.0
|
||||
return grad_input * mask
|
||||
|
||||
def multilabel_categorical_crossentropy(y_pred, y_true):
|
||||
y_pred = (1 - 2 * y_true) * y_pred
|
||||
y_pred_neg = y_pred - y_true * 1e12
|
||||
y_pred_pos = y_pred - (1 - y_true) * 1e12
|
||||
zeros = torch.zeros_like(y_pred[..., :1])
|
||||
y_pred_neg = torch.cat([y_pred_neg, zeros], dim=-1)
|
||||
y_pred_pos = torch.cat([y_pred_pos, zeros], dim=-1)
|
||||
neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
|
||||
pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
|
||||
return (neg_loss + pos_loss).mean()
|
||||
|
||||
|
||||
class BertLitModel(BaseLitModel):
|
||||
"""
|
||||
use AutoModelForMaskedLM, and select the output by another layer in the lit model
|
||||
"""
|
||||
def __init__(self, model, args, tokenizer):
|
||||
super().__init__(model, args)
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
with open(f"{args.data_dir}/rel2id.json","r") as file:
|
||||
rel2id = json.load(file)
|
||||
|
||||
Na_num = 0
|
||||
for k, v in rel2id.items():
|
||||
if k == "NA" or k == "no_relation" or k == "Other":
|
||||
Na_num = v
|
||||
break
|
||||
num_relation = len(rel2id)
|
||||
# init loss function
|
||||
self.loss_fn = multilabel_categorical_crossentropy if "dialogue" in args.data_dir else nn.CrossEntropyLoss()
|
||||
# ignore the no_relation class to compute the f1 score
|
||||
self.eval_fn = f1_eval if "dialogue" in args.data_dir else partial(f1_score, rel_num=num_relation, na_num=Na_num)
|
||||
self.best_f1 = 0
|
||||
self.t_lambda = args.t_lambda
|
||||
|
||||
self.label_st_id = tokenizer("[class1]", add_special_tokens=False)['input_ids'][0]
|
||||
|
||||
self._init_label_word()
|
||||
|
||||
def _init_label_word(self):
|
||||
args = self.args
|
||||
# ./dataset/dataset_name
|
||||
dataset_name = args.data_dir.split("/")[1]
|
||||
model_name_or_path = args.model_name_or_path.split("/")[-1]
|
||||
label_path = f"./dataset/{model_name_or_path}_{dataset_name}.pt"
|
||||
# [num_labels, num_tokens], ignore the unanswerable
|
||||
if "dialogue" in args.data_dir:
|
||||
label_word_idx = torch.load(label_path)[:-1]
|
||||
else:
|
||||
label_word_idx = torch.load(label_path)
|
||||
|
||||
num_labels = len(label_word_idx)
|
||||
|
||||
self.cur_model.resize_token_embeddings(len(self.tokenizer))
|
||||
with torch.no_grad():
|
||||
word_embeddings = self.cur_model.get_input_embeddings()
|
||||
continous_label_word = [a[0] for a in self.tokenizer([f"[class{i}]" for i in range(1, num_labels+1)], add_special_tokens=False)['input_ids']]
|
||||
for i, idx in enumerate(label_word_idx):
|
||||
word_embeddings.weight[continous_label_word[i]] = torch.mean(word_embeddings.weight[idx], dim=0)
|
||||
# word_embeddings.weight[continous_label_word[i]] = self.relation_embedding[i]
|
||||
so_word = [a[0] for a in self.tokenizer(["[obj]","[sub]"], add_special_tokens=False)['input_ids']]
|
||||
meaning_word = [a[0] for a in self.tokenizer(["person","organization", "location", "date", "country"], add_special_tokens=False)['input_ids']]
|
||||
|
||||
for i, idx in enumerate(so_word):
|
||||
word_embeddings.weight[so_word[i]] = torch.mean(word_embeddings.weight[meaning_word], dim=0)
|
||||
assert torch.equal(self.cur_model.get_input_embeddings().weight, word_embeddings.weight)
|
||||
assert torch.equal(self.cur_model.get_input_embeddings().weight, self.cur_model.get_output_embeddings().weight)
|
||||
|
||||
self.word2label = continous_label_word # a continous list
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def training_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids , labels, so = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
so = so.to(self.device)
|
||||
result = self.model(input_ids, attention_mask, token_type_ids, return_dict=True, output_hidden_states=True)
|
||||
logits = result.logits
|
||||
output_embedding = result.hidden_states[-1]
|
||||
logits = self.pvp(logits, input_ids)
|
||||
loss = self.loss_fn(logits, labels) + self.t_lambda * self.ke_loss(output_embedding, labels, so)
|
||||
#print("Train/loss: ", loss)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids , labels, _ = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask, token_type_ids, return_dict=True).logits
|
||||
logits = self.pvp(logits, input_ids)
|
||||
loss = self.loss_fn(logits, labels)
|
||||
#print("Eval/loss: ", loss)
|
||||
return {"loss": loss, "eval_logits": logits.detach().cpu().numpy(), "eval_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def validation_epoch_end(self, outputs):
|
||||
logits = np.concatenate([o["eval_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["eval_labels"] for o in outputs])
|
||||
|
||||
f1 = self.eval_fn(logits, labels)['f1']
|
||||
#print("Eval/f1: ", f1)
|
||||
best_f1 = -1
|
||||
if f1 > self.best_f1:
|
||||
self.best_f1 = f1
|
||||
best_f1 = self.best_f1
|
||||
#print("Eval/best_f1: ", self.best_f1)
|
||||
return f1, best_f1, self.best_f1
|
||||
|
||||
def test_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids , labels, _ = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask, token_type_ids, return_dict=True).logits
|
||||
logits = self.pvp(logits, input_ids)
|
||||
return {"test_logits": logits.detach().cpu().numpy(), "test_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
logits = np.concatenate([o["test_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["test_labels"] for o in outputs])
|
||||
|
||||
f1 = self.eval_fn(logits, labels)['f1']
|
||||
#print("Test/f1: ", f1)
|
||||
return f1
|
||||
|
||||
|
||||
@staticmethod
|
||||
def add_to_argparse(parser):
|
||||
BaseLitModel.add_to_argparse(parser)
|
||||
parser.add_argument("--t_lambda", type=float, default=0.01, help="")
|
||||
return parser
|
||||
|
||||
def pvp(self, logits, input_ids):
|
||||
# convert the [batch_size, seq_len, vocab_size] => [batch_size, num_labels]
|
||||
#! hard coded
|
||||
_, mask_idx = (input_ids == 103).nonzero(as_tuple=True)
|
||||
bs = input_ids.shape[0]
|
||||
mask_output = logits[torch.arange(bs), mask_idx]
|
||||
assert mask_idx.shape[0] == bs, "only one mask in sequence!"
|
||||
final_output = mask_output[:,self.word2label]
|
||||
|
||||
return final_output
|
||||
|
||||
def ke_loss(self, logits, labels, so):
|
||||
subject_embedding = []
|
||||
object_embedding = []
|
||||
bsz = logits.shape[0]
|
||||
for i in range(bsz):
|
||||
subject_embedding.append(torch.mean(logits[i, so[i][0]:so[i][1]], dim=0))
|
||||
object_embedding.append(torch.mean(logits[i, so[i][2]:so[i][3]], dim=0))
|
||||
|
||||
subject_embedding = torch.stack(subject_embedding)
|
||||
object_embedding = torch.stack(object_embedding)
|
||||
# trick , the relation ids is concated,
|
||||
relation_embedding = self.cur_model.get_output_embeddings().weight[labels+self.label_st_id]
|
||||
|
||||
loss = torch.norm(subject_embedding + relation_embedding - object_embedding, p=2)
|
||||
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
no_decay_param = ["bias", "LayerNorm.weight"]
|
||||
|
||||
if not self.args.two_steps:
|
||||
parameters = self.cur_model.named_parameters()
|
||||
else:
|
||||
# cur_model.bert.embeddings.weight
|
||||
parameters = [next(self.cur_model.named_parameters())]
|
||||
# only optimize the embedding parameters
|
||||
optimizer_group_parameters = [
|
||||
{"params": [p for n, p in parameters if not any(nd in n for nd in no_decay_param)], "weight_decay": self.args.weight_decay},
|
||||
{"params": [p for n, p in parameters if any(nd in n for nd in no_decay_param)], "weight_decay": 0}
|
||||
]
|
||||
|
||||
|
||||
optimizer = self.optimizer_class(optimizer_group_parameters, lr=self.lr, eps=1e-8)
|
||||
return optimizer
|
||||
'''return {
|
||||
"optimizer": optimizer,
|
||||
"lr_scheduler":{
|
||||
'scheduler': scheduler,
|
||||
'interval': 'step', # or 'epoch'
|
||||
'frequency': 1,
|
||||
}
|
||||
}'''
|
||||
|
||||
|
||||
class dialog_BertLitModel(BaseLitModel):
|
||||
"""
|
||||
use AutoModelForMaskedLM, and select the output by another layer in the lit model
|
||||
"""
|
||||
|
||||
def __init__(self, model, args, tokenizer, device):
|
||||
super().__init__(model, args)
|
||||
self.tokenizer = tokenizer
|
||||
self.device = device
|
||||
with open(f"{args.data_dir}/rel2id.json", "r") as file:
|
||||
rel2id = json.load(file)
|
||||
|
||||
Na_num = 0
|
||||
for k, v in rel2id.items():
|
||||
if k == "NA" or k == "no_relation" or k == "Other":
|
||||
Na_num = v
|
||||
break
|
||||
num_relation = len(rel2id)
|
||||
# init loss function
|
||||
self.loss_fn = multilabel_categorical_crossentropy if "dialogue" in args.data_dir else nn.CrossEntropyLoss()
|
||||
# ignore the no_relation class to compute the f1 score
|
||||
self.eval_fn = dialog_f1_eval if "dialogue" in args.data_dir else partial(f1_score, rel_num=num_relation,
|
||||
na_num=Na_num)
|
||||
self.best_f1 = 0
|
||||
self.t_lambda = args.t_lambda
|
||||
|
||||
self.label_st_id = tokenizer("[class1]", add_special_tokens=False)['input_ids'][0]
|
||||
|
||||
self._init_label_word()
|
||||
|
||||
def _init_label_word(self):
|
||||
args = self.args
|
||||
# ./dataset/dataset_name
|
||||
dataset_name = args.data_dir.split("/")[1]
|
||||
model_name_or_path = args.model_name_or_path.split("/")[-1]
|
||||
label_path = f"./dataset/{model_name_or_path}_{dataset_name}.pt"
|
||||
# [num_labels, num_tokens], ignore the unanswerable
|
||||
if "dialogue" in args.data_dir:
|
||||
label_word_idx = torch.load(label_path)[:-1]
|
||||
else:
|
||||
label_word_idx = torch.load(label_path)
|
||||
|
||||
num_labels = len(label_word_idx)
|
||||
#print(len(self.tokenizer))
|
||||
self.cur_model.resize_token_embeddings(len(self.tokenizer))
|
||||
with torch.no_grad():
|
||||
word_embeddings = self.cur_model.get_input_embeddings()
|
||||
continous_label_word = [a[0] for a in self.tokenizer([f"[class{i}]" for i in range(1, num_labels + 1)],
|
||||
add_special_tokens=False)['input_ids']]
|
||||
for i, idx in enumerate(label_word_idx):
|
||||
word_embeddings.weight[continous_label_word[i]] = torch.mean(word_embeddings.weight[idx], dim=0)
|
||||
# word_embeddings.weight[continous_label_word[i]] = self.relation_embedding[i]
|
||||
so_word = [a[0] for a in self.tokenizer(["[obj]", "[sub]"], add_special_tokens=False)['input_ids']]
|
||||
meaning_word = [a[0] for a in self.tokenizer(["person", "organization", "location", "date", "country"],
|
||||
add_special_tokens=False)['input_ids']]
|
||||
|
||||
for i, idx in enumerate(so_word):
|
||||
word_embeddings.weight[so_word[i]] = torch.mean(word_embeddings.weight[meaning_word], dim=0)
|
||||
assert torch.equal(self.cur_model.get_input_embeddings().weight, word_embeddings.weight)
|
||||
assert torch.equal(self.cur_model.get_input_embeddings().weight, self.cur_model.get_output_embeddings().weight)
|
||||
|
||||
self.word2label = continous_label_word # a continous list
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def training_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids, labels, so = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
so = so.to(self.device)
|
||||
result = self.model(input_ids, attention_mask, token_type_ids, return_dict=True, output_hidden_states=True)
|
||||
logits = result.logits
|
||||
output_embedding = result.hidden_states[-1]
|
||||
logits = self.pvp(logits, input_ids)
|
||||
loss = self.loss_fn(logits, labels) + self.t_lambda * self.ke_loss(output_embedding, labels, so)
|
||||
#print("Train/loss: ", loss)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids, labels, _ = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask, token_type_ids, return_dict=True).logits
|
||||
logits = self.pvp(logits, input_ids)
|
||||
loss = self.loss_fn(logits, labels)
|
||||
#print("Eval/loss: ", loss)
|
||||
return {"loss": loss, "eval_logits": logits.detach().cpu().numpy(), "eval_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def validation_epoch_end(self, outputs) -> None:
|
||||
logits = np.concatenate([o["eval_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["eval_labels"] for o in outputs])
|
||||
|
||||
f1 = self.eval_fn(logits, labels)['f1']
|
||||
#print("Eval/f1: ", f1)
|
||||
best_f1 = -1
|
||||
if f1 > self.best_f1:
|
||||
self.best_f1 = f1
|
||||
best_f1 = self.best_f1
|
||||
#print("Eval/best_f1: ", self.best_f1)
|
||||
return f1, best_f1, self.best_f1
|
||||
|
||||
def test_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids, labels, _ = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask, token_type_ids, return_dict=True).logits
|
||||
logits = self.pvp(logits, input_ids)
|
||||
return {"test_logits": logits.detach().cpu().numpy(), "test_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
logits = np.concatenate([o["test_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["test_labels"] for o in outputs])
|
||||
|
||||
f1 = self.eval_fn(logits, labels)['f1']
|
||||
#print("Test/f1: ", f1)
|
||||
return f1
|
||||
|
||||
@staticmethod
|
||||
def add_to_argparse(parser):
|
||||
BaseLitModel.add_to_argparse(parser)
|
||||
parser.add_argument("--t_lambda", type=float, default=0.01, help="")
|
||||
return parser
|
||||
|
||||
def pvp(self, logits, input_ids):
|
||||
# convert the [batch_size, seq_len, vocab_size] => [batch_size, num_labels]
|
||||
# ! hard coded
|
||||
_, mask_idx = (input_ids == 103).nonzero(as_tuple=True)
|
||||
bs = input_ids.shape[0]
|
||||
mask_output = logits[torch.arange(bs), mask_idx]
|
||||
assert mask_idx.shape[0] == bs, "only one mask in sequence!"
|
||||
final_output = mask_output[:, self.word2label]
|
||||
|
||||
return final_output
|
||||
|
||||
def ke_loss(self, logits, labels, so):
|
||||
subject_embedding = []
|
||||
object_embedding = []
|
||||
bsz = logits.shape[0]
|
||||
for i in range(bsz):
|
||||
subject_embedding.append(torch.mean(logits[i, so[i][0]:so[i][1]], dim=0))
|
||||
object_embedding.append(torch.mean(logits[i, so[i][2]:so[i][3]], dim=0))
|
||||
|
||||
subject_embedding = torch.stack(subject_embedding)
|
||||
object_embedding = torch.stack(object_embedding)
|
||||
# trick , the relation ids is concated,
|
||||
relation_embedding = self.cur_model.get_output_embeddings().weight[labels + self.label_st_id]
|
||||
|
||||
loss = torch.norm(subject_embedding + relation_embedding - object_embedding, p=2)
|
||||
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
no_decay_param = ["bias", "LayerNorm.weight"]
|
||||
|
||||
if not self.args.two_steps:
|
||||
parameters = self.cur_model.named_parameters()
|
||||
else:
|
||||
# cur_model.bert.embeddings.weight
|
||||
parameters = [next(self.cur_model.named_parameters())]
|
||||
# only optimize the embedding parameters
|
||||
optimizer_group_parameters = [
|
||||
{"params": [p for n, p in parameters if not any(nd in n for nd in no_decay_param)],
|
||||
"weight_decay": self.args.weight_decay},
|
||||
{"params": [p for n, p in parameters if any(nd in n for nd in no_decay_param)], "weight_decay": 0}
|
||||
]
|
||||
|
||||
optimizer = self.optimizer_class(optimizer_group_parameters, lr=self.lr, eps=1e-8)
|
||||
return optimizer
|
||||
'''return {
|
||||
"optimizer": optimizer,
|
||||
"lr_scheduler": {
|
||||
'scheduler': scheduler,
|
||||
'interval': 'step', # or 'epoch'
|
||||
'frequency': 1,
|
||||
}
|
||||
}'''
|
||||
|
||||
|
||||
class TransformerLitModelTwoSteps(BertLitModel):
|
||||
def configure_optimizers(self):
|
||||
no_decay_param = ["bais", "LayerNorm.weight"]
|
||||
optimizer_group_parameters = [
|
||||
{"params": [p for n, p in self.cur_model.named_parameters() if not any(nd in n for nd in no_decay_param)], "weight_decay": self.args.weight_decay},
|
||||
{"params": [p for n, p in self.cur_model.named_parameters() if any(nd in n for nd in no_decay_param)], "weight_decay": 0}
|
||||
]
|
||||
optimizer = self.optimizer_class(optimizer_group_parameters, lr=self.args.lr_2, eps=1e-8)
|
||||
#scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.num_training_steps * 0.1, num_training_steps=self.num_training_steps)
|
||||
return optimizer
|
||||
'''return {
|
||||
"optimizer": optimizer,
|
||||
"lr_scheduler":{
|
||||
'scheduler': scheduler,
|
||||
'interval': 'step', # or 'epoch'
|
||||
'frequency': 1,
|
||||
}
|
||||
}'''
|
||||
|
||||
|
||||
class DialogueLitModel(dialog_BertLitModel):
|
||||
|
||||
def training_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids, labels = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
result = self.model(input_ids, attention_mask, token_type_ids, return_dict=True, output_hidden_states=True)
|
||||
logits = result.logits
|
||||
logits = self.pvp(logits, input_ids)
|
||||
loss = self.loss_fn(logits, labels)
|
||||
#print("Train/loss: ", loss)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids, labels = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask, token_type_ids, return_dict=True).logits
|
||||
logits = self.pvp(logits, input_ids)
|
||||
loss = self.loss_fn(logits, labels)
|
||||
#print("Eval/loss: ", loss)
|
||||
return {"loss": loss, "eval_logits": logits.detach().cpu().numpy(), "eval_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def validation_epoch_end(self, outputs) -> None:
|
||||
logits = np.concatenate([o["eval_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["eval_labels"] for o in outputs])
|
||||
|
||||
f1 = self.eval_fn(logits, labels)['f1']
|
||||
#print("Eval/f1: ", f1)
|
||||
best_f1 = -1
|
||||
if f1 > self.best_f1:
|
||||
self.best_f1 = f1
|
||||
best_f1 = self.best_f1
|
||||
#print("Eval/best_f1: ", self.best_f1)
|
||||
return f1, best_f1, self.best_f1
|
||||
|
||||
def test_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, token_type_ids, labels = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
token_type_ids = token_type_ids.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask, token_type_ids, return_dict=True).logits
|
||||
logits = self.pvp(logits, input_ids)
|
||||
return {"test_logits": logits.detach().cpu().numpy(), "test_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
logits = np.concatenate([o["test_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["test_labels"] for o in outputs])
|
||||
|
||||
f1 = self.eval_fn(logits, labels)['f1']
|
||||
#print("Test/f1: ", f1)
|
||||
return f1
|
||||
|
||||
@staticmethod
|
||||
def add_to_argparse(parser):
|
||||
BaseLitModel.add_to_argparse(parser)
|
||||
parser.add_argument("--t_lambda", type=float, default=0.01, help="")
|
||||
return parser
|
||||
|
||||
def pvp(self, logits, input_ids):
|
||||
# convert the [batch_size, seq_len, vocab_size] => [batch_size, num_labels]
|
||||
# ! hard coded
|
||||
_, mask_idx = (input_ids == 103).nonzero(as_tuple=True)
|
||||
bs = input_ids.shape[0]
|
||||
mask_output = logits[torch.arange(bs), mask_idx]
|
||||
assert mask_idx.shape[0] == bs, "only one mask in sequence!"
|
||||
final_output = mask_output[:, self.word2label]
|
||||
|
||||
return final_output
|
||||
|
||||
|
||||
class GPTLitModel(BaseLitModel):
|
||||
def __init__(self, model, args , data_config):
|
||||
super().__init__(model, args)
|
||||
# self.num_training_steps = data_config["num_training_steps"]
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
# self.loss_fn = multilabel_categorical_crossentropy
|
||||
self.best_f1 = 0
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
def training_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, cls_idx , labels = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
cls_idx = cls_idx.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask=attention_mask, mc_token_ids=cls_idx)
|
||||
if not isinstance(logits, torch.Tensor):
|
||||
logits = logits.mc_logits
|
||||
|
||||
loss = self.loss_fn(logits, labels)
|
||||
#print("Train/loss: ", loss)
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch, batch_idx): # pylint: disable=unused-argument
|
||||
input_ids, attention_mask, cls_idx , labels = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
cls_idx = cls_idx.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask=attention_mask, mc_token_ids=cls_idx)
|
||||
if not isinstance(logits, torch.Tensor):
|
||||
logits = logits.mc_logits
|
||||
loss = self.loss_fn(logits, labels)
|
||||
#print("Eval/loss: ", loss)
|
||||
return {"loss": loss, "eval_logits": logits.detach().cpu().numpy(), "eval_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def validation_epoch_end(self, outputs) -> None:
|
||||
logits = np.concatenate([o["eval_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["eval_labels"] for o in outputs])
|
||||
|
||||
# f1 = compute_f1(logits, labels)["f1"]
|
||||
f1 = f1_score(logits, labels)
|
||||
#print("Eval/f1: ", f1)
|
||||
best_f1 = -1
|
||||
if f1 > self.best_f1:
|
||||
self.best_f1 = f1
|
||||
best_f1 = self.best_f1
|
||||
#print("Eval/best_f1: ", self.best_f1)
|
||||
return f1, best_f1, self.best_f1
|
||||
|
||||
def test_step(self, batch, batch_idx): # pylint: disable=unused-argumenT
|
||||
input_ids, attention_mask, cls_idx , labels = batch
|
||||
input_ids = input_ids.to(self.device)
|
||||
attention_mask = attention_mask.to(self.device)
|
||||
cls_idx = cls_idx.to(self.device)
|
||||
labels = labels.to(self.device)
|
||||
logits = self.model(input_ids, attention_mask=attention_mask, mc_token_ids=cls_idx)
|
||||
if not isinstance(logits, torch.Tensor):
|
||||
logits = logits.mc_logits
|
||||
return {"test_logits": logits.detach().cpu().numpy(), "test_labels": labels.detach().cpu().numpy()}
|
||||
|
||||
def test_epoch_end(self, outputs):
|
||||
logits = np.concatenate([o["test_logits"] for o in outputs])
|
||||
labels = np.concatenate([o["test_labels"] for o in outputs])
|
||||
|
||||
f1 = f1_score(logits, labels)
|
||||
# f1 = acc(logits, labels)
|
||||
#print("Test/f1: ", f1)
|
||||
return f1
|
|
@ -0,0 +1,228 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def dialog_f1_eval(logits, labels):
|
||||
def getpred(result, T1=0.5, T2=0.4):
|
||||
# 使用阈值得到preds, result = logits
|
||||
# T2 表示如果都低于T2 那么就是 no relation, 否则选取一个最大的
|
||||
ret = []
|
||||
for i in range(len(result)):
|
||||
r = []
|
||||
maxl, maxj = -1, -1
|
||||
for j in range(len(result[i])):
|
||||
if result[i][j] > T1:
|
||||
r += [j]
|
||||
if result[i][j] > maxl:
|
||||
maxl = result[i][j]
|
||||
maxj = j
|
||||
if len(r) == 0:
|
||||
if maxl <= T2:
|
||||
r = [36]
|
||||
else:
|
||||
r += [maxj]
|
||||
ret.append(r)
|
||||
return ret
|
||||
|
||||
def geteval(devp, data):
|
||||
correct_sys, all_sys = 0, 0
|
||||
correct_gt = 0
|
||||
|
||||
for i in range(len(data)):
|
||||
# 每一个样本 都是[1,4,...,20] 表示有1,4,20 是1, 如果没有就是[36]
|
||||
for id in data[i]:
|
||||
if id != 36:
|
||||
# 标签中 1 的个数
|
||||
correct_gt += 1
|
||||
if id in devp[i]:
|
||||
# 预测正确
|
||||
correct_sys += 1
|
||||
|
||||
for id in devp[i]:
|
||||
if id != 36:
|
||||
all_sys += 1
|
||||
|
||||
precision = 1 if all_sys == 0 else correct_sys / all_sys
|
||||
recall = 0 if correct_gt == 0 else correct_sys / correct_gt
|
||||
f_1 = 2 * precision * recall / (precision + recall) if precision + recall != 0 else 0
|
||||
return f_1
|
||||
|
||||
logits = np.asarray(logits)
|
||||
logits = list(1 / (1 + np.exp(-logits)))
|
||||
|
||||
temp_labels = []
|
||||
for l in labels:
|
||||
t = []
|
||||
for i in range(36):
|
||||
if l[i] == 1:
|
||||
t += [i]
|
||||
if len(t) == 0:
|
||||
t = [36]
|
||||
temp_labels.append(t)
|
||||
assert (len(labels) == len(logits))
|
||||
labels = temp_labels
|
||||
|
||||
bestT2 = bestf_1 = 0
|
||||
for T2 in range(51):
|
||||
devp = getpred(logits, T2=T2 / 100.)
|
||||
f_1 = geteval(devp, labels)
|
||||
if f_1 > bestf_1:
|
||||
bestf_1 = f_1
|
||||
bestT2 = T2 / 100.
|
||||
|
||||
return dict(f1=bestf_1, T2=bestT2)
|
||||
|
||||
|
||||
|
||||
def f1_eval(logits, labels):
|
||||
def getpred(result, T1 = 0.5, T2 = 0.4) :
|
||||
# 使用阈值得到preds, result = logits
|
||||
# T2 表示如果都低于T2 那么就是 no relation, 否则选取一个最大的
|
||||
ret = []
|
||||
for i in range(len(result)):
|
||||
r = []
|
||||
maxl, maxj = -1, -1
|
||||
for j in range(len(result[i])):
|
||||
if result[i][j] > T1:
|
||||
r += [j]
|
||||
if result[i][j] > maxl:
|
||||
maxl = result[i][j]
|
||||
maxj = j
|
||||
if len(r) == 0:
|
||||
if maxl <= T2:
|
||||
r = [36]
|
||||
else:
|
||||
r += [maxj]
|
||||
ret.append(r)
|
||||
return ret
|
||||
|
||||
def geteval(devp, data):
|
||||
correct_sys, all_sys = 0, 0
|
||||
correct_gt = 0
|
||||
|
||||
for i in range(len(data)):
|
||||
# 每一个样本 都是[1,4,...,20] 表示有1,4,20 是1, 如果没有就是[36]
|
||||
for id in data[i]:
|
||||
if id != 36:
|
||||
# 标签中 1 的个数
|
||||
correct_gt += 1
|
||||
if id in devp[i]:
|
||||
# 预测正确
|
||||
correct_sys += 1
|
||||
|
||||
for id in devp[i]:
|
||||
if id != 36:
|
||||
all_sys += 1
|
||||
|
||||
precision = 1 if all_sys == 0 else correct_sys/all_sys
|
||||
recall = 0 if correct_gt == 0 else correct_sys/correct_gt
|
||||
f_1 = 2*precision*recall/(precision+recall) if precision+recall != 0 else 0
|
||||
return f_1
|
||||
|
||||
logits = np.asarray(logits)
|
||||
logits = list(1 / (1 + np.exp(-logits)))
|
||||
|
||||
temp_labels = []
|
||||
for l in labels:
|
||||
t = []
|
||||
for i in range(36):
|
||||
if l[i] == 1:
|
||||
t += [i]
|
||||
if len(t) == 0:
|
||||
t = [36]
|
||||
temp_labels.append(t)
|
||||
assert(len(labels) == len(logits))
|
||||
labels = temp_labels
|
||||
|
||||
bestT2 = bestf_1 = 0
|
||||
for T2 in range(51):
|
||||
devp = getpred(logits, T2=T2/100.)
|
||||
f_1 = geteval(devp, labels)
|
||||
if f_1 > bestf_1:
|
||||
bestf_1 = f_1
|
||||
bestT2 = T2/100.
|
||||
|
||||
return bestf_1, bestT2
|
||||
|
||||
|
||||
|
||||
def compute_f1(logits, labels):
|
||||
n_gold = n_pred = n_correct = 0
|
||||
preds = np.argmax(logits, axis=-1)
|
||||
for pred, label in zip(preds, labels):
|
||||
if pred != 0:
|
||||
n_pred += 1
|
||||
if label != 0:
|
||||
n_gold += 1
|
||||
if pred != 0 and label != 0 and (pred == label):
|
||||
n_correct += 1
|
||||
if n_correct == 0:
|
||||
return {'precision': 0.0, 'recall': 0.0, 'f1': 0.0}
|
||||
else:
|
||||
prec = n_correct * 1.0 / n_pred
|
||||
recall = n_correct * 1.0 / n_gold
|
||||
if prec + recall > 0:
|
||||
f1 = 2.0 * prec * recall / (prec + recall)
|
||||
else:
|
||||
f1 = 0.0
|
||||
return {'precision': prec, 'recall': recall, 'f1': f1}
|
||||
|
||||
|
||||
def acc(logits, labels):
|
||||
preds = np.argmax(logits, axis=-1)
|
||||
return (preds == labels).mean()
|
||||
|
||||
from collections import Counter
|
||||
def f1_score(output, label, rel_num=42, na_num=13):
|
||||
correct_by_relation = Counter()
|
||||
guess_by_relation = Counter()
|
||||
gold_by_relation = Counter()
|
||||
output = np.argmax(output, axis=-1)
|
||||
|
||||
for i in range(len(output)):
|
||||
guess = output[i]
|
||||
gold = label[i]
|
||||
|
||||
if guess == na_num:
|
||||
guess = 0
|
||||
elif guess < na_num:
|
||||
guess += 1
|
||||
|
||||
if gold == na_num:
|
||||
gold = 0
|
||||
elif gold < na_num:
|
||||
gold += 1
|
||||
|
||||
if gold == 0 and guess == 0:
|
||||
continue
|
||||
if gold == 0 and guess != 0:
|
||||
guess_by_relation[guess] += 1
|
||||
if gold != 0 and guess == 0:
|
||||
gold_by_relation[gold] += 1
|
||||
if gold != 0 and guess != 0:
|
||||
guess_by_relation[guess] += 1
|
||||
gold_by_relation[gold] += 1
|
||||
if gold == guess:
|
||||
correct_by_relation[gold] += 1
|
||||
|
||||
f1_by_relation = Counter()
|
||||
recall_by_relation = Counter()
|
||||
prec_by_relation = Counter()
|
||||
for i in range(1, rel_num):
|
||||
recall = 0
|
||||
if gold_by_relation[i] > 0:
|
||||
recall = correct_by_relation[i] / gold_by_relation[i]
|
||||
precision = 0
|
||||
if guess_by_relation[i] > 0:
|
||||
precision = correct_by_relation[i] / guess_by_relation[i]
|
||||
if recall + precision > 0 :
|
||||
f1_by_relation[i] = 2 * recall * precision / (recall + precision)
|
||||
recall_by_relation[i] = recall
|
||||
prec_by_relation[i] = precision
|
||||
|
||||
micro_f1 = 0
|
||||
if sum(guess_by_relation.values()) != 0 and sum(correct_by_relation.values()) != 0:
|
||||
recall = sum(correct_by_relation.values()) / sum(gold_by_relation.values())
|
||||
prec = sum(correct_by_relation.values()) / sum(guess_by_relation.values())
|
||||
micro_f1 = 2 * recall * prec / (recall+prec)
|
||||
|
||||
return dict(f1=micro_f1)
|
|
@ -0,0 +1 @@
|
|||
# this is an empty file
|
|
@ -0,0 +1,7 @@
|
|||
from .bert import BertForSequenceClassification
|
||||
from .bert.modeling_bert import BertGetLabelWord, BertUseLabelWord, BertDecouple, BertForMaskedLM
|
||||
from .gpt2 import GPT2DoubleHeadsModel
|
||||
from .gpt2.modeling_gpt2 import GPT2UseLabelWord
|
||||
|
||||
from .roberta import RobertaForSequenceClassification
|
||||
from .roberta.modeling_roberta import RobertaUseLabelWord
|
|
@ -0,0 +1,155 @@
|
|||
# flake8: noqa
|
||||
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
||||
# module, but to preserve other warnings. So, don't check this module at all.
|
||||
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from transformers.file_utils import (
|
||||
_BaseLazyModule,
|
||||
is_flax_available,
|
||||
is_tf_available,
|
||||
is_tokenizers_available,
|
||||
is_torch_available,
|
||||
)
|
||||
|
||||
from .modeling_bert import BertGetLabelWord, BertUseLabelWord
|
||||
_import_structure = {
|
||||
"configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig"],
|
||||
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"],
|
||||
}
|
||||
|
||||
if is_tokenizers_available():
|
||||
_import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"]
|
||||
|
||||
if is_torch_available():
|
||||
_import_structure["modeling_bert"] = [
|
||||
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"BertForMaskedLM",
|
||||
"BertForMultipleChoice",
|
||||
"BertForNextSentencePrediction",
|
||||
"BertForPreTraining",
|
||||
"BertForQuestionAnswering",
|
||||
"BertForSequenceClassification",
|
||||
"BertForTokenClassification",
|
||||
"BertLayer",
|
||||
"BertLMHeadModel",
|
||||
"BertModel",
|
||||
"BertPreTrainedModel",
|
||||
"load_tf_weights_in_bert",
|
||||
]
|
||||
|
||||
if is_tf_available():
|
||||
_import_structure["modeling_tf_bert"] = [
|
||||
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"TFBertEmbeddings",
|
||||
"TFBertForMaskedLM",
|
||||
"TFBertForMultipleChoice",
|
||||
"TFBertForNextSentencePrediction",
|
||||
"TFBertForPreTraining",
|
||||
"TFBertForQuestionAnswering",
|
||||
"TFBertForSequenceClassification",
|
||||
"TFBertForTokenClassification",
|
||||
"TFBertLMHeadModel",
|
||||
"TFBertMainLayer",
|
||||
"TFBertModel",
|
||||
"TFBertPreTrainedModel",
|
||||
]
|
||||
|
||||
if is_flax_available():
|
||||
_import_structure["modeling_flax_bert"] = [
|
||||
"FlaxBertForMaskedLM",
|
||||
"FlaxBertForMultipleChoice",
|
||||
"FlaxBertForNextSentencePrediction",
|
||||
"FlaxBertForPreTraining",
|
||||
"FlaxBertForQuestionAnswering",
|
||||
"FlaxBertForSequenceClassification",
|
||||
"FlaxBertForTokenClassification",
|
||||
"FlaxBertModel",
|
||||
"FlaxBertPreTrainedModel",
|
||||
]
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig
|
||||
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
|
||||
|
||||
if is_tokenizers_available():
|
||||
from .tokenization_bert_fast import BertTokenizerFast
|
||||
|
||||
if is_torch_available():
|
||||
from .modeling_bert import (
|
||||
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
BertForMaskedLM,
|
||||
BertForMultipleChoice,
|
||||
BertForNextSentencePrediction,
|
||||
BertForPreTraining,
|
||||
BertForQuestionAnswering,
|
||||
BertForSequenceClassification,
|
||||
BertForTokenClassification,
|
||||
BertLayer,
|
||||
BertLMHeadModel,
|
||||
BertModel,
|
||||
BertPreTrainedModel,
|
||||
load_tf_weights_in_bert,
|
||||
)
|
||||
|
||||
if is_tf_available():
|
||||
from .modeling_tf_bert import (
|
||||
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
TFBertEmbeddings,
|
||||
TFBertForMaskedLM,
|
||||
TFBertForMultipleChoice,
|
||||
TFBertForNextSentencePrediction,
|
||||
TFBertForPreTraining,
|
||||
TFBertForQuestionAnswering,
|
||||
TFBertForSequenceClassification,
|
||||
TFBertForTokenClassification,
|
||||
TFBertLMHeadModel,
|
||||
TFBertMainLayer,
|
||||
TFBertModel,
|
||||
TFBertPreTrainedModel,
|
||||
)
|
||||
|
||||
if is_flax_available():
|
||||
from .modeling_flax_bert import (
|
||||
FlaxBertForMaskedLM,
|
||||
FlaxBertForMultipleChoice,
|
||||
FlaxBertForNextSentencePrediction,
|
||||
FlaxBertForPreTraining,
|
||||
FlaxBertForQuestionAnswering,
|
||||
FlaxBertForSequenceClassification,
|
||||
FlaxBertForTokenClassification,
|
||||
FlaxBertModel,
|
||||
FlaxBertPreTrainedModel,
|
||||
)
|
||||
|
||||
else:
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
class _LazyModule(_BaseLazyModule):
|
||||
"""
|
||||
Module class that surfaces all objects but only performs associated imports when the objects are requested.
|
||||
"""
|
||||
|
||||
__file__ = globals()["__file__"]
|
||||
__path__ = [os.path.dirname(__file__)]
|
||||
|
||||
def _get_module(self, module_name: str):
|
||||
return importlib.import_module("." + module_name, self.__name__)
|
||||
|
||||
sys.modules[__name__] = _LazyModule(__name__, _import_structure)
|
|
@ -0,0 +1,156 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" BERT model configuration """
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
|
||||
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
|
||||
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
|
||||
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
|
||||
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
|
||||
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
|
||||
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
|
||||
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
|
||||
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json",
|
||||
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json",
|
||||
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json",
|
||||
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json",
|
||||
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
|
||||
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
|
||||
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
|
||||
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
|
||||
"cl-tohoku/bert-base-japanese-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json",
|
||||
"cl-tohoku/bert-base-japanese-char": "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json",
|
||||
"cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json",
|
||||
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json",
|
||||
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json",
|
||||
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
|
||||
# See all BERT models at https://huggingface.co/models?filter=bert
|
||||
}
|
||||
|
||||
|
||||
class BertConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a :class:`~transformers.BertModel` or a
|
||||
:class:`~transformers.TFBertModel`. It is used to instantiate a BERT model according to the specified arguments,
|
||||
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
|
||||
to that of the BERT `bert-base-uncased <https://huggingface.co/bert-base-uncased>`__ architecture.
|
||||
|
||||
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
||||
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (:obj:`int`, `optional`, defaults to 30522):
|
||||
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
|
||||
:obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or
|
||||
:class:`~transformers.TFBertModel`.
|
||||
hidden_size (:obj:`int`, `optional`, defaults to 768):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (:obj:`int`, `optional`, defaults to 12):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
|
||||
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||||
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
||||
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
|
||||
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
|
||||
The dropout ratio for the attention probabilities.
|
||||
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
|
||||
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or
|
||||
:class:`~transformers.TFBertModel`.
|
||||
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
|
||||
The epsilon used by the layer normalization layers.
|
||||
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
|
||||
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
|
||||
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
|
||||
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
|
||||
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
|
||||
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
|
||||
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
|
||||
<https://arxiv.org/abs/2009.13658>`__.
|
||||
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if ``config.is_decoder=True``.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> from transformers import BertModel, BertConfig
|
||||
|
||||
>>> # Initializing a BERT bert-base-uncased style configuration
|
||||
>>> configuration = BertConfig()
|
||||
|
||||
>>> # Initializing a model from the bert-base-uncased style configuration
|
||||
>>> model = BertModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
"""
|
||||
model_type = "bert"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=30522,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-12,
|
||||
pad_token_id=0,
|
||||
gradient_checkpointing=False,
|
||||
position_embedding_type="absolute",
|
||||
use_cache=True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.gradient_checkpointing = gradient_checkpointing
|
||||
self.position_embedding_type = position_embedding_type
|
||||
self.use_cache = use_cache
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,558 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes for Bert."""
|
||||
|
||||
|
||||
import collections
|
||||
import os
|
||||
import unicodedata
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
|
||||
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
|
||||
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
|
||||
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
|
||||
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
|
||||
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
|
||||
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
|
||||
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
|
||||
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
|
||||
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
|
||||
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
||||
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
||||
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
|
||||
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
|
||||
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
|
||||
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
|
||||
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
|
||||
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
|
||||
}
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"bert-base-uncased": 512,
|
||||
"bert-large-uncased": 512,
|
||||
"bert-base-cased": 512,
|
||||
"bert-large-cased": 512,
|
||||
"bert-base-multilingual-uncased": 512,
|
||||
"bert-base-multilingual-cased": 512,
|
||||
"bert-base-chinese": 512,
|
||||
"bert-base-german-cased": 512,
|
||||
"bert-large-uncased-whole-word-masking": 512,
|
||||
"bert-large-cased-whole-word-masking": 512,
|
||||
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
|
||||
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
|
||||
"bert-base-cased-finetuned-mrpc": 512,
|
||||
"bert-base-german-dbmdz-cased": 512,
|
||||
"bert-base-german-dbmdz-uncased": 512,
|
||||
"TurkuNLP/bert-base-finnish-cased-v1": 512,
|
||||
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
|
||||
"wietsedv/bert-base-dutch-cased": 512,
|
||||
}
|
||||
|
||||
PRETRAINED_INIT_CONFIGURATION = {
|
||||
"bert-base-uncased": {"do_lower_case": True},
|
||||
"bert-large-uncased": {"do_lower_case": True},
|
||||
"bert-base-cased": {"do_lower_case": False},
|
||||
"bert-large-cased": {"do_lower_case": False},
|
||||
"bert-base-multilingual-uncased": {"do_lower_case": True},
|
||||
"bert-base-multilingual-cased": {"do_lower_case": False},
|
||||
"bert-base-chinese": {"do_lower_case": False},
|
||||
"bert-base-german-cased": {"do_lower_case": False},
|
||||
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
|
||||
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
|
||||
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
|
||||
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
|
||||
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
|
||||
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
|
||||
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
|
||||
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
|
||||
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
|
||||
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
|
||||
}
|
||||
|
||||
|
||||
def load_vocab(vocab_file):
|
||||
"""Loads a vocabulary file into a dictionary."""
|
||||
vocab = collections.OrderedDict()
|
||||
with open(vocab_file, "r", encoding="utf-8") as reader:
|
||||
tokens = reader.readlines()
|
||||
for index, token in enumerate(tokens):
|
||||
token = token.rstrip("\n")
|
||||
vocab[token] = index
|
||||
return vocab
|
||||
|
||||
|
||||
def whitespace_tokenize(text):
|
||||
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
||||
text = text.strip()
|
||||
if not text:
|
||||
return []
|
||||
tokens = text.split()
|
||||
return tokens
|
||||
|
||||
|
||||
class BertTokenizer(PreTrainedTokenizer):
|
||||
r"""
|
||||
Construct a BERT tokenizer. Based on WordPiece.
|
||||
|
||||
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
|
||||
Users should refer to this superclass for more information regarding those methods.
|
||||
|
||||
Args:
|
||||
vocab_file (:obj:`str`):
|
||||
File containing the vocabulary.
|
||||
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not to lowercase the input when tokenizing.
|
||||
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not to do basic tokenization before WordPiece.
|
||||
never_split (:obj:`Iterable`, `optional`):
|
||||
Collection of tokens which will never be split during tokenization. Only has an effect when
|
||||
:obj:`do_basic_tokenize=True`
|
||||
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
|
||||
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
||||
sequence classification or for a text and a question for question answering. It is also used as the last
|
||||
token of a sequence built with special tokens.
|
||||
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
|
||||
The token used for padding, for example when batching sequences of different lengths.
|
||||
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
|
||||
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
||||
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
||||
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
|
||||
The token used for masking values. This is the token used when training this model with masked language
|
||||
modeling. This is the token which the model will try to predict.
|
||||
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not to tokenize Chinese characters.
|
||||
|
||||
This should likely be deactivated for Japanese (see this `issue
|
||||
<https://github.com/huggingface/transformers/issues/328>`__).
|
||||
strip_accents: (:obj:`bool`, `optional`):
|
||||
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
||||
value for :obj:`lowercase` (as in the original BERT).
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
do_lower_case=True,
|
||||
do_basic_tokenize=True,
|
||||
never_split=None,
|
||||
unk_token="[UNK]",
|
||||
sep_token="[SEP]",
|
||||
pad_token="[PAD]",
|
||||
cls_token="[CLS]",
|
||||
mask_token="[MASK]",
|
||||
tokenize_chinese_chars=True,
|
||||
strip_accents=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
do_lower_case=do_lower_case,
|
||||
do_basic_tokenize=do_basic_tokenize,
|
||||
never_split=never_split,
|
||||
unk_token=unk_token,
|
||||
sep_token=sep_token,
|
||||
pad_token=pad_token,
|
||||
cls_token=cls_token,
|
||||
mask_token=mask_token,
|
||||
tokenize_chinese_chars=tokenize_chinese_chars,
|
||||
strip_accents=strip_accents,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if not os.path.isfile(vocab_file):
|
||||
raise ValueError(
|
||||
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
|
||||
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
||||
)
|
||||
self.vocab = load_vocab(vocab_file)
|
||||
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
||||
self.do_basic_tokenize = do_basic_tokenize
|
||||
if do_basic_tokenize:
|
||||
self.basic_tokenizer = BasicTokenizer(
|
||||
do_lower_case=do_lower_case,
|
||||
never_split=never_split,
|
||||
tokenize_chinese_chars=tokenize_chinese_chars,
|
||||
strip_accents=strip_accents,
|
||||
)
|
||||
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
||||
|
||||
@property
|
||||
def do_lower_case(self):
|
||||
return self.basic_tokenizer.do_lower_case
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return len(self.vocab)
|
||||
|
||||
def get_vocab(self):
|
||||
return dict(self.vocab, **self.added_tokens_encoder)
|
||||
|
||||
def _tokenize(self, text):
|
||||
split_tokens = []
|
||||
if self.do_basic_tokenize:
|
||||
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
||||
|
||||
# If the token is part of the never_split set
|
||||
if token in self.basic_tokenizer.never_split:
|
||||
split_tokens.append(token)
|
||||
else:
|
||||
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
||||
else:
|
||||
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
||||
return split_tokens
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
""" Converts a token (str) in an id using the vocab. """
|
||||
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
return self.ids_to_tokens.get(index, self.unk_token)
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
""" Converts a sequence of tokens (string) in a single string. """
|
||||
out_string = " ".join(tokens).replace(" ##", "").strip()
|
||||
return out_string
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||
adding special tokens. A BERT sequence has the following format:
|
||||
|
||||
- single sequence: ``[CLS] X [SEP]``
|
||||
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs to which the special tokens will be added.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
||||
"""
|
||||
if token_ids_1 is None:
|
||||
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
sep = [self.sep_token_id]
|
||||
return cls + token_ids_0 + sep + token_ids_1 + sep
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer ``prepare_for_model`` method.
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
|
||||
if already_has_special_tokens:
|
||||
if token_ids_1 is not None:
|
||||
raise ValueError(
|
||||
"You should not supply a second sequence if the provided sequence of "
|
||||
"ids is already formatted with special tokens for the model."
|
||||
)
|
||||
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
||||
|
||||
if token_ids_1 is not None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
||||
pair mask has the following format:
|
||||
|
||||
::
|
||||
|
||||
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
||||
| first sequence | second sequence |
|
||||
|
||||
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
|
||||
sequence(s).
|
||||
"""
|
||||
sep = [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
if token_ids_1 is None:
|
||||
return len(cls + token_ids_0 + sep) * [0]
|
||||
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
index = 0
|
||||
if os.path.isdir(save_directory):
|
||||
vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
else:
|
||||
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
||||
with open(vocab_file, "w", encoding="utf-8") as writer:
|
||||
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
||||
if index != token_index:
|
||||
logger.warning(
|
||||
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
||||
" Please check that the vocabulary is not corrupted!"
|
||||
)
|
||||
index = token_index
|
||||
writer.write(token + "\n")
|
||||
index += 1
|
||||
return (vocab_file,)
|
||||
|
||||
|
||||
class BasicTokenizer(object):
|
||||
"""
|
||||
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
||||
|
||||
Args:
|
||||
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not to lowercase the input when tokenizing.
|
||||
never_split (:obj:`Iterable`, `optional`):
|
||||
Collection of tokens which will never be split during tokenization. Only has an effect when
|
||||
:obj:`do_basic_tokenize=True`
|
||||
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not to tokenize Chinese characters.
|
||||
|
||||
This should likely be deactivated for Japanese (see this `issue
|
||||
<https://github.com/huggingface/transformers/issues/328>`__).
|
||||
strip_accents: (:obj:`bool`, `optional`):
|
||||
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
||||
value for :obj:`lowercase` (as in the original BERT).
|
||||
"""
|
||||
|
||||
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
||||
if never_split is None:
|
||||
never_split = []
|
||||
self.do_lower_case = do_lower_case
|
||||
self.never_split = set(never_split)
|
||||
self.tokenize_chinese_chars = tokenize_chinese_chars
|
||||
self.strip_accents = strip_accents
|
||||
|
||||
def tokenize(self, text, never_split=None):
|
||||
"""
|
||||
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
||||
WordPieceTokenizer.
|
||||
|
||||
Args:
|
||||
**never_split**: (`optional`) list of str
|
||||
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
||||
:func:`PreTrainedTokenizer.tokenize`) List of token not to split.
|
||||
"""
|
||||
# union() returns a new set by concatenating the two sets.
|
||||
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
||||
text = self._clean_text(text)
|
||||
|
||||
# This was added on November 1st, 2018 for the multilingual and Chinese
|
||||
# models. This is also applied to the English models now, but it doesn't
|
||||
# matter since the English models were not trained on any Chinese data
|
||||
# and generally don't have any Chinese data in them (there are Chinese
|
||||
# characters in the vocabulary because Wikipedia does have some Chinese
|
||||
# words in the English Wikipedia.).
|
||||
if self.tokenize_chinese_chars:
|
||||
text = self._tokenize_chinese_chars(text)
|
||||
orig_tokens = whitespace_tokenize(text)
|
||||
split_tokens = []
|
||||
for token in orig_tokens:
|
||||
if token not in never_split:
|
||||
if self.do_lower_case:
|
||||
token = token.lower()
|
||||
if self.strip_accents is not False:
|
||||
token = self._run_strip_accents(token)
|
||||
elif self.strip_accents:
|
||||
token = self._run_strip_accents(token)
|
||||
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
||||
|
||||
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
||||
return output_tokens
|
||||
|
||||
def _run_strip_accents(self, text):
|
||||
"""Strips accents from a piece of text."""
|
||||
text = unicodedata.normalize("NFD", text)
|
||||
output = []
|
||||
for char in text:
|
||||
cat = unicodedata.category(char)
|
||||
if cat == "Mn":
|
||||
continue
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
def _run_split_on_punc(self, text, never_split=None):
|
||||
"""Splits punctuation on a piece of text."""
|
||||
if never_split is not None and text in never_split:
|
||||
return [text]
|
||||
chars = list(text)
|
||||
i = 0
|
||||
start_new_word = True
|
||||
output = []
|
||||
while i < len(chars):
|
||||
char = chars[i]
|
||||
if _is_punctuation(char):
|
||||
output.append([char])
|
||||
start_new_word = True
|
||||
else:
|
||||
if start_new_word:
|
||||
output.append([])
|
||||
start_new_word = False
|
||||
output[-1].append(char)
|
||||
i += 1
|
||||
|
||||
return ["".join(x) for x in output]
|
||||
|
||||
def _tokenize_chinese_chars(self, text):
|
||||
"""Adds whitespace around any CJK character."""
|
||||
output = []
|
||||
for char in text:
|
||||
cp = ord(char)
|
||||
if self._is_chinese_char(cp):
|
||||
output.append(" ")
|
||||
output.append(char)
|
||||
output.append(" ")
|
||||
else:
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
def _is_chinese_char(self, cp):
|
||||
"""Checks whether CP is the codepoint of a CJK character."""
|
||||
# This defines a "chinese character" as anything in the CJK Unicode block:
|
||||
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
||||
#
|
||||
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
||||
# despite its name. The modern Korean Hangul alphabet is a different block,
|
||||
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
||||
# space-separated words, so they are not treated specially and handled
|
||||
# like the all of the other languages.
|
||||
if (
|
||||
(cp >= 0x4E00 and cp <= 0x9FFF)
|
||||
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
||||
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
||||
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
||||
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
||||
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
||||
or (cp >= 0xF900 and cp <= 0xFAFF)
|
||||
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
||||
): #
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _clean_text(self, text):
|
||||
"""Performs invalid character removal and whitespace cleanup on text."""
|
||||
output = []
|
||||
for char in text:
|
||||
cp = ord(char)
|
||||
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
||||
continue
|
||||
if _is_whitespace(char):
|
||||
output.append(" ")
|
||||
else:
|
||||
output.append(char)
|
||||
return "".join(output)
|
||||
|
||||
|
||||
class WordpieceTokenizer(object):
|
||||
"""Runs WordPiece tokenization."""
|
||||
|
||||
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
||||
self.vocab = vocab
|
||||
self.unk_token = unk_token
|
||||
self.max_input_chars_per_word = max_input_chars_per_word
|
||||
|
||||
def tokenize(self, text):
|
||||
"""
|
||||
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
||||
tokenization using the given vocabulary.
|
||||
|
||||
For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`.
|
||||
|
||||
Args:
|
||||
text: A single token or whitespace separated tokens. This should have
|
||||
already been passed through `BasicTokenizer`.
|
||||
|
||||
Returns:
|
||||
A list of wordpiece tokens.
|
||||
"""
|
||||
|
||||
output_tokens = []
|
||||
for token in whitespace_tokenize(text):
|
||||
chars = list(token)
|
||||
if len(chars) > self.max_input_chars_per_word:
|
||||
output_tokens.append(self.unk_token)
|
||||
continue
|
||||
|
||||
is_bad = False
|
||||
start = 0
|
||||
sub_tokens = []
|
||||
while start < len(chars):
|
||||
end = len(chars)
|
||||
cur_substr = None
|
||||
while start < end:
|
||||
substr = "".join(chars[start:end])
|
||||
if start > 0:
|
||||
substr = "##" + substr
|
||||
if substr in self.vocab:
|
||||
cur_substr = substr
|
||||
break
|
||||
end -= 1
|
||||
if cur_substr is None:
|
||||
is_bad = True
|
||||
break
|
||||
sub_tokens.append(cur_substr)
|
||||
start = end
|
||||
|
||||
if is_bad:
|
||||
output_tokens.append(self.unk_token)
|
||||
else:
|
||||
output_tokens.extend(sub_tokens)
|
||||
return output_tokens
|
|
@ -0,0 +1,140 @@
|
|||
# flake8: noqa
|
||||
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
||||
# module, but to preserve other warnings. So, don't check this module at all.
|
||||
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...file_utils import (
|
||||
_BaseLazyModule,
|
||||
is_flax_available,
|
||||
is_tf_available,
|
||||
is_tokenizers_available,
|
||||
is_torch_available,
|
||||
)
|
||||
|
||||
|
||||
_import_structure = {
|
||||
"configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig"],
|
||||
"tokenization_electra": ["ElectraTokenizer"],
|
||||
}
|
||||
|
||||
if is_tokenizers_available():
|
||||
_import_structure["tokenization_electra_fast"] = ["ElectraTokenizerFast"]
|
||||
|
||||
if is_torch_available():
|
||||
_import_structure["modeling_electra"] = [
|
||||
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"ElectraForMaskedLM",
|
||||
"ElectraForMultipleChoice",
|
||||
"ElectraForPreTraining",
|
||||
"ElectraForQuestionAnswering",
|
||||
"ElectraForSequenceClassification",
|
||||
"ElectraForTokenClassification",
|
||||
"ElectraModel",
|
||||
"ElectraPreTrainedModel",
|
||||
"load_tf_weights_in_electra",
|
||||
]
|
||||
|
||||
if is_tf_available():
|
||||
_import_structure["modeling_tf_electra"] = [
|
||||
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"TFElectraForMaskedLM",
|
||||
"TFElectraForMultipleChoice",
|
||||
"TFElectraForPreTraining",
|
||||
"TFElectraForQuestionAnswering",
|
||||
"TFElectraForSequenceClassification",
|
||||
"TFElectraForTokenClassification",
|
||||
"TFElectraModel",
|
||||
"TFElectraPreTrainedModel",
|
||||
]
|
||||
|
||||
if is_flax_available():
|
||||
_import_structure["modeling_flax_electra"] = [
|
||||
"FlaxElectraForMaskedLM",
|
||||
"FlaxElectraForMultipleChoice",
|
||||
"FlaxElectraForPreTraining",
|
||||
"FlaxElectraForQuestionAnswering",
|
||||
"FlaxElectraForSequenceClassification",
|
||||
"FlaxElectraForTokenClassification",
|
||||
"FlaxElectraModel",
|
||||
"FlaxElectraPreTrainedModel",
|
||||
]
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig
|
||||
from .tokenization_electra import ElectraTokenizer
|
||||
|
||||
if is_tokenizers_available():
|
||||
from .tokenization_electra_fast import ElectraTokenizerFast
|
||||
|
||||
if is_torch_available():
|
||||
from .modeling_electra import (
|
||||
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
ElectraForMaskedLM,
|
||||
ElectraForMultipleChoice,
|
||||
ElectraForPreTraining,
|
||||
ElectraForQuestionAnswering,
|
||||
ElectraForSequenceClassification,
|
||||
ElectraForTokenClassification,
|
||||
ElectraModel,
|
||||
ElectraPreTrainedModel,
|
||||
load_tf_weights_in_electra,
|
||||
)
|
||||
|
||||
if is_tf_available():
|
||||
from .modeling_tf_electra import (
|
||||
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
TFElectraForMaskedLM,
|
||||
TFElectraForMultipleChoice,
|
||||
TFElectraForPreTraining,
|
||||
TFElectraForQuestionAnswering,
|
||||
TFElectraForSequenceClassification,
|
||||
TFElectraForTokenClassification,
|
||||
TFElectraModel,
|
||||
TFElectraPreTrainedModel,
|
||||
)
|
||||
|
||||
if is_flax_available():
|
||||
from .modeling_flax_electra import (
|
||||
FlaxElectraForMaskedLM,
|
||||
FlaxElectraForMultipleChoice,
|
||||
FlaxElectraForPreTraining,
|
||||
FlaxElectraForQuestionAnswering,
|
||||
FlaxElectraForSequenceClassification,
|
||||
FlaxElectraForTokenClassification,
|
||||
FlaxElectraModel,
|
||||
FlaxElectraPreTrainedModel,
|
||||
)
|
||||
|
||||
else:
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
class _LazyModule(_BaseLazyModule):
|
||||
"""
|
||||
Module class that surfaces all objects but only performs associated imports when the objects are requested.
|
||||
"""
|
||||
|
||||
__file__ = globals()["__file__"]
|
||||
__path__ = [os.path.dirname(__file__)]
|
||||
|
||||
def _get_module(self, module_name: str):
|
||||
return importlib.import_module("." + module_name, self.__name__)
|
||||
|
||||
sys.modules[__name__] = _LazyModule(__name__, _import_structure)
|
|
@ -0,0 +1,166 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" ELECTRA model configuration """
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json",
|
||||
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json",
|
||||
"google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json",
|
||||
"google/electra-small-discriminator": "https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json",
|
||||
"google/electra-base-discriminator": "https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json",
|
||||
"google/electra-large-discriminator": "https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class ElectraConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a :class:`~transformers.ElectraModel` or a
|
||||
:class:`~transformers.TFElectraModel`. It is used to instantiate a ELECTRA model according to the specified
|
||||
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
|
||||
configuration to that of the ELECTRA `google/electra-small-discriminator
|
||||
<https://huggingface.co/google/electra-small-discriminator>`__ architecture.
|
||||
|
||||
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
||||
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (:obj:`int`, `optional`, defaults to 30522):
|
||||
Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
|
||||
:obj:`inputs_ids` passed when calling :class:`~transformers.ElectraModel` or
|
||||
:class:`~transformers.TFElectraModel`.
|
||||
embedding_size (:obj:`int`, `optional`, defaults to 128):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
hidden_size (:obj:`int`, `optional`, defaults to 256):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (:obj:`int`, `optional`, defaults to 4):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
intermediate_size (:obj:`int`, `optional`, defaults to 1024):
|
||||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||||
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
||||
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
|
||||
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
|
||||
The dropout ratio for the attention probabilities.
|
||||
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
|
||||
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.ElectraModel` or
|
||||
:class:`~transformers.TFElectraModel`.
|
||||
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
|
||||
The epsilon used by the layer normalization layers.
|
||||
summary_type (:obj:`str`, `optional`, defaults to :obj:`"first"`):
|
||||
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
||||
|
||||
Has to be one of the following options:
|
||||
|
||||
- :obj:`"last"`: Take the last token hidden state (like XLNet).
|
||||
- :obj:`"first"`: Take the first token hidden state (like BERT).
|
||||
- :obj:`"mean"`: Take the mean of all tokens hidden states.
|
||||
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
||||
- :obj:`"attn"`: Not implemented now, use multi-head attention.
|
||||
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
||||
|
||||
Whether or not to add a projection after the vector extraction.
|
||||
summary_activation (:obj:`str`, `optional`):
|
||||
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
||||
|
||||
Pass :obj:`"gelu"` for a gelu activation to the output, any other value will result in no activation.
|
||||
summary_last_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
||||
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
||||
|
||||
The dropout ratio to be used after the projection and activation.
|
||||
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
|
||||
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
|
||||
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
|
||||
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
|
||||
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
|
||||
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
|
||||
<https://arxiv.org/abs/2009.13658>`__.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> from transformers import ElectraModel, ElectraConfig
|
||||
|
||||
>>> # Initializing a ELECTRA electra-base-uncased style configuration
|
||||
>>> configuration = ElectraConfig()
|
||||
|
||||
>>> # Initializing a model from the electra-base-uncased style configuration
|
||||
>>> model = ElectraModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
"""
|
||||
model_type = "electra"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=30522,
|
||||
embedding_size=128,
|
||||
hidden_size=256,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=1024,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-12,
|
||||
summary_type="first",
|
||||
summary_use_proj=True,
|
||||
summary_activation="gelu",
|
||||
summary_last_dropout=0.1,
|
||||
pad_token_id=0,
|
||||
position_embedding_type="absolute",
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_size = embedding_size
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.type_vocab_size = type_vocab_size
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
|
||||
self.summary_type = summary_type
|
||||
self.summary_use_proj = summary_use_proj
|
||||
self.summary_activation = summary_activation
|
||||
self.summary_last_dropout = summary_last_dropout
|
||||
self.position_embedding_type = position_embedding_type
|
|
@ -0,0 +1,79 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Convert ELECTRA checkpoint."""
|
||||
|
||||
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
|
||||
from transformers import ElectraConfig, ElectraForMaskedLM, ElectraForPreTraining, load_tf_weights_in_electra
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logging.set_verbosity_info()
|
||||
|
||||
|
||||
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, discriminator_or_generator):
|
||||
# Initialise PyTorch model
|
||||
config = ElectraConfig.from_json_file(config_file)
|
||||
print(f"Building PyTorch model from configuration: {config}")
|
||||
|
||||
if discriminator_or_generator == "discriminator":
|
||||
model = ElectraForPreTraining(config)
|
||||
elif discriminator_or_generator == "generator":
|
||||
model = ElectraForMaskedLM(config)
|
||||
else:
|
||||
raise ValueError("The discriminator_or_generator argument should be either 'discriminator' or 'generator'")
|
||||
|
||||
# Load weights from tf checkpoint
|
||||
load_tf_weights_in_electra(
|
||||
model, config, tf_checkpoint_path, discriminator_or_generator=discriminator_or_generator
|
||||
)
|
||||
|
||||
# Save pytorch-model
|
||||
print(f"Save PyTorch model to {pytorch_dump_path}")
|
||||
torch.save(model.state_dict(), pytorch_dump_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
# Required parameters
|
||||
parser.add_argument(
|
||||
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_file",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="The config json file corresponding to the pre-trained model. \n"
|
||||
"This specifies the model architecture.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--discriminator_or_generator",
|
||||
default=None,
|
||||
type=str,
|
||||
required=True,
|
||||
help="Whether to export the generator or the discriminator. Should be a string, either 'discriminator' or "
|
||||
"'generator'.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
convert_tf_checkpoint_to_pytorch(
|
||||
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.discriminator_or_generator
|
||||
)
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,66 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ..bert.tokenization_bert import BertTokenizer
|
||||
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt",
|
||||
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
|
||||
"google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt",
|
||||
"google/electra-small-discriminator": "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt",
|
||||
"google/electra-base-discriminator": "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt",
|
||||
"google/electra-large-discriminator": "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt",
|
||||
}
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"google/electra-small-generator": 512,
|
||||
"google/electra-base-generator": 512,
|
||||
"google/electra-large-generator": 512,
|
||||
"google/electra-small-discriminator": 512,
|
||||
"google/electra-base-discriminator": 512,
|
||||
"google/electra-large-discriminator": 512,
|
||||
}
|
||||
|
||||
|
||||
PRETRAINED_INIT_CONFIGURATION = {
|
||||
"google/electra-small-generator": {"do_lower_case": True},
|
||||
"google/electra-base-generator": {"do_lower_case": True},
|
||||
"google/electra-large-generator": {"do_lower_case": True},
|
||||
"google/electra-small-discriminator": {"do_lower_case": True},
|
||||
"google/electra-base-discriminator": {"do_lower_case": True},
|
||||
"google/electra-large-discriminator": {"do_lower_case": True},
|
||||
}
|
||||
|
||||
|
||||
class ElectraTokenizer(BertTokenizer):
|
||||
r"""
|
||||
Construct an ELECTRA tokenizer.
|
||||
|
||||
:class:`~transformers.ElectraTokenizer` is identical to :class:`~transformers.BertTokenizer` and runs end-to-end
|
||||
tokenization: punctuation splitting and wordpiece.
|
||||
|
||||
Refer to superclass :class:`~transformers.BertTokenizer` for usage examples and documentation concerning
|
||||
parameters.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
|
@ -0,0 +1,75 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ..bert.tokenization_bert_fast import BertTokenizerFast
|
||||
from .tokenization_electra import ElectraTokenizer
|
||||
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt",
|
||||
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt",
|
||||
"google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt",
|
||||
"google/electra-small-discriminator": "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt",
|
||||
"google/electra-base-discriminator": "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt",
|
||||
"google/electra-large-discriminator": "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt",
|
||||
},
|
||||
"tokenizer_file": {
|
||||
"google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json",
|
||||
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json",
|
||||
"google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json",
|
||||
"google/electra-small-discriminator": "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json",
|
||||
"google/electra-base-discriminator": "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json",
|
||||
"google/electra-large-discriminator": "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json",
|
||||
},
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"google/electra-small-generator": 512,
|
||||
"google/electra-base-generator": 512,
|
||||
"google/electra-large-generator": 512,
|
||||
"google/electra-small-discriminator": 512,
|
||||
"google/electra-base-discriminator": 512,
|
||||
"google/electra-large-discriminator": 512,
|
||||
}
|
||||
|
||||
|
||||
PRETRAINED_INIT_CONFIGURATION = {
|
||||
"google/electra-small-generator": {"do_lower_case": True},
|
||||
"google/electra-base-generator": {"do_lower_case": True},
|
||||
"google/electra-large-generator": {"do_lower_case": True},
|
||||
"google/electra-small-discriminator": {"do_lower_case": True},
|
||||
"google/electra-base-discriminator": {"do_lower_case": True},
|
||||
"google/electra-large-discriminator": {"do_lower_case": True},
|
||||
}
|
||||
|
||||
|
||||
class ElectraTokenizerFast(BertTokenizerFast):
|
||||
r"""
|
||||
Construct a "fast" ELECTRA tokenizer (backed by HuggingFace's `tokenizers` library).
|
||||
|
||||
:class:`~transformers.ElectraTokenizerFast` is identical to :class:`~transformers.BertTokenizerFast` and runs
|
||||
end-to-end tokenization: punctuation splitting and wordpiece.
|
||||
|
||||
Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning
|
||||
parameters.
|
||||
"""
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
||||
slow_tokenizer_class = ElectraTokenizer
|
|
@ -0,0 +1,100 @@
|
|||
# flake8: noqa
|
||||
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
||||
# module, but to preserve other warnings. So, don't check this module at all.
|
||||
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from transformers.file_utils import _BaseLazyModule, is_tf_available, is_tokenizers_available, is_torch_available
|
||||
|
||||
|
||||
_import_structure = {
|
||||
"configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config"],
|
||||
"tokenization_gpt2": ["GPT2Tokenizer"],
|
||||
}
|
||||
|
||||
if is_tokenizers_available():
|
||||
_import_structure["tokenization_gpt2_fast"] = ["GPT2TokenizerFast"]
|
||||
|
||||
if is_torch_available():
|
||||
_import_structure["modeling_gpt2"] = [
|
||||
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"GPT2DoubleHeadsModel",
|
||||
"GPT2ForSequenceClassification",
|
||||
"GPT2LMHeadModel",
|
||||
"GPT2Model",
|
||||
"GPT2PreTrainedModel",
|
||||
"load_tf_weights_in_gpt2",
|
||||
]
|
||||
|
||||
if is_tf_available():
|
||||
_import_structure["modeling_tf_gpt2"] = [
|
||||
"TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"TFGPT2DoubleHeadsModel",
|
||||
"TFGPT2ForSequenceClassification",
|
||||
"TFGPT2LMHeadModel",
|
||||
"TFGPT2MainLayer",
|
||||
"TFGPT2Model",
|
||||
"TFGPT2PreTrainedModel",
|
||||
]
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config
|
||||
from .tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
if is_tokenizers_available():
|
||||
from .tokenization_gpt2_fast import GPT2TokenizerFast
|
||||
|
||||
if is_torch_available():
|
||||
from .modeling_gpt2 import (
|
||||
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
GPT2DoubleHeadsModel,
|
||||
GPT2ForSequenceClassification,
|
||||
GPT2LMHeadModel,
|
||||
GPT2Model,
|
||||
GPT2PreTrainedModel,
|
||||
load_tf_weights_in_gpt2,
|
||||
)
|
||||
|
||||
if is_tf_available():
|
||||
from .modeling_tf_gpt2 import (
|
||||
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
TFGPT2DoubleHeadsModel,
|
||||
TFGPT2ForSequenceClassification,
|
||||
TFGPT2LMHeadModel,
|
||||
TFGPT2MainLayer,
|
||||
TFGPT2Model,
|
||||
TFGPT2PreTrainedModel,
|
||||
)
|
||||
|
||||
else:
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
class _LazyModule(_BaseLazyModule):
|
||||
"""
|
||||
Module class that surfaces all objects but only performs associated imports when the objects are requested.
|
||||
"""
|
||||
|
||||
__file__ = globals()["__file__"]
|
||||
__path__ = [os.path.dirname(__file__)]
|
||||
|
||||
def _get_module(self, module_name: str):
|
||||
return importlib.import_module("." + module_name, self.__name__)
|
||||
|
||||
sys.modules[__name__] = _LazyModule(__name__, _import_structure)
|
|
@ -0,0 +1,198 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" OpenAI GPT-2 configuration """
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
|
||||
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
|
||||
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
|
||||
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
|
||||
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class GPT2Config(PretrainedConfig):
|
||||
"""
|
||||
This is the configuration class to store the configuration of a :class:`~transformers.GPT2Model` or a
|
||||
:class:`~transformers.TFGPT2Model`. It is used to instantiate a GPT-2 model according to the specified arguments,
|
||||
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
|
||||
to that of the GPT-2 `small <https://huggingface.co/gpt2>`__ architecture.
|
||||
|
||||
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
||||
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (:obj:`int`, `optional`, defaults to 50257):
|
||||
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
||||
:obj:`inputs_ids` passed when calling :class:`~transformers.GPT2Model` or
|
||||
:class:`~transformers.TFGPT2Model`.
|
||||
n_positions (:obj:`int`, `optional`, defaults to 1024):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
n_ctx (:obj:`int`, `optional`, defaults to 1024):
|
||||
Dimensionality of the causal mask (usually same as n_positions).
|
||||
n_embd (:obj:`int`, `optional`, defaults to 768):
|
||||
Dimensionality of the embeddings and hidden states.
|
||||
n_layer (:obj:`int`, `optional`, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
n_head (:obj:`int`, `optional`, defaults to 12):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
n_inner (:obj:`int`, `optional`, defaults to None):
|
||||
Dimensionality of the inner feed-forward layers. :obj:`None` will set it to 4 times n_embd
|
||||
activation_function (:obj:`str`, `optional`, defaults to :obj:`"gelu"`):
|
||||
Activation function, to be selected in the list :obj:`["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
||||
resid_pdrop (:obj:`float`, `optional`, defaults to 0.1):
|
||||
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
embd_pdrop (:obj:`int`, `optional`, defaults to 0.1):
|
||||
The dropout ratio for the embeddings.
|
||||
attn_pdrop (:obj:`float`, `optional`, defaults to 0.1):
|
||||
The dropout ratio for the attention.
|
||||
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
|
||||
The epsilon to use in the layer normalization layers
|
||||
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
summary_type (:obj:`string`, `optional`, defaults to :obj:`"cls_index"`):
|
||||
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
|
||||
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
|
||||
|
||||
Has to be one of the following options:
|
||||
|
||||
- :obj:`"last"`: Take the last token hidden state (like XLNet).
|
||||
- :obj:`"first"`: Take the first token hidden state (like BERT).
|
||||
- :obj:`"mean"`: Take the mean of all tokens hidden states.
|
||||
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
||||
- :obj:`"attn"`: Not implemented now, use multi-head attention.
|
||||
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
|
||||
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
|
||||
|
||||
Whether or not to add a projection after the vector extraction.
|
||||
summary_activation (:obj:`str`, `optional`):
|
||||
Argument used when doing sequence summary. Used in for the multiple choice head in
|
||||
:class:`~transformers.GPT2DoubleHeadsModel`.
|
||||
|
||||
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
||||
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
|
||||
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
|
||||
|
||||
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes.
|
||||
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1):
|
||||
Argument used when doing sequence summary, used in the models :class:`~transformers.GPT2DoubleHeadsModel`
|
||||
and :class:`~transformers.TFGPT2DoubleHeadsModel`.
|
||||
|
||||
The dropout ratio to be used after the projection and activation.
|
||||
scale_attn_weights (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Scale attention weights by dividing by sqrt(hidden_size).
|
||||
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.
|
||||
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
|
||||
Example::
|
||||
|
||||
>>> from transformers import GPT2Model, GPT2Config
|
||||
|
||||
>>> # Initializing a GPT2 configuration
|
||||
>>> configuration = GPT2Config()
|
||||
|
||||
>>> # Initializing a model from the configuration
|
||||
>>> model = GPT2Model(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
"""
|
||||
|
||||
model_type = "gpt2"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=50257,
|
||||
n_positions=1024,
|
||||
n_ctx=1024,
|
||||
n_embd=768,
|
||||
n_layer=12,
|
||||
n_head=12,
|
||||
n_inner=None,
|
||||
activation_function="gelu_new",
|
||||
resid_pdrop=0.1,
|
||||
embd_pdrop=0.1,
|
||||
attn_pdrop=0.1,
|
||||
layer_norm_epsilon=1e-5,
|
||||
initializer_range=0.02,
|
||||
summary_type="cls_index",
|
||||
summary_use_proj=True,
|
||||
summary_activation=None,
|
||||
summary_proj_to_labels=True,
|
||||
summary_first_dropout=0.1,
|
||||
scale_attn_weights=True,
|
||||
gradient_checkpointing=False,
|
||||
use_cache=True,
|
||||
bos_token_id=50256,
|
||||
eos_token_id=50256,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.n_ctx = n_ctx
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_head = n_head
|
||||
self.n_inner = n_inner
|
||||
self.activation_function = activation_function
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.attn_pdrop = attn_pdrop
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.summary_type = summary_type
|
||||
self.summary_use_proj = summary_use_proj
|
||||
self.summary_activation = summary_activation
|
||||
self.summary_first_dropout = summary_first_dropout
|
||||
self.summary_proj_to_labels = summary_proj_to_labels
|
||||
self.gradient_checkpointing = gradient_checkpointing
|
||||
self.scale_attn_weights = scale_attn_weights
|
||||
self.use_cache = use_cache
|
||||
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
|
||||
@property
|
||||
def max_position_embeddings(self):
|
||||
return self.n_positions
|
||||
|
||||
@property
|
||||
def hidden_size(self):
|
||||
return self.n_embd
|
||||
|
||||
@property
|
||||
def num_attention_heads(self):
|
||||
return self.n_head
|
||||
|
||||
@property
|
||||
def num_hidden_layers(self):
|
||||
return self.n_layer
|
|
@ -0,0 +1,68 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Convert OpenAI GPT checkpoint."""
|
||||
|
||||
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
|
||||
from transformers import GPT2Config, GPT2Model, load_tf_weights_in_gpt2
|
||||
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logging.set_verbosity_info()
|
||||
|
||||
|
||||
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
|
||||
# Construct model
|
||||
if gpt2_config_file == "":
|
||||
config = GPT2Config()
|
||||
else:
|
||||
config = GPT2Config.from_json_file(gpt2_config_file)
|
||||
model = GPT2Model(config)
|
||||
|
||||
# Load weights from numpy
|
||||
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path)
|
||||
|
||||
# Save pytorch-model
|
||||
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
||||
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
||||
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
|
||||
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
||||
print(f"Save configuration file to {pytorch_config_dump_path}")
|
||||
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
||||
f.write(config.to_json_string())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
# Required parameters
|
||||
parser.add_argument(
|
||||
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gpt2_config_file",
|
||||
default="",
|
||||
type=str,
|
||||
help="An optional config json file corresponding to the pre-trained OpenAI model. \n"
|
||||
"This specifies the model architecture.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path, args.gpt2_config_file, args.pytorch_dump_folder_path)
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,309 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes for OpenAI GPT."""
|
||||
|
||||
|
||||
import json
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple
|
||||
|
||||
import regex as re
|
||||
|
||||
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.pipelines.conversational import Conversation
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {
|
||||
"vocab_file": "vocab.json",
|
||||
"merges_file": "merges.txt",
|
||||
}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
|
||||
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
|
||||
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
|
||||
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
|
||||
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
|
||||
},
|
||||
"merges_file": {
|
||||
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
|
||||
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
|
||||
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
|
||||
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
|
||||
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
|
||||
},
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"gpt2": 1024,
|
||||
"gpt2-medium": 1024,
|
||||
"gpt2-large": 1024,
|
||||
"gpt2-xl": 1024,
|
||||
"distilgpt2": 1024,
|
||||
}
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
||||
characters the bpe code barfs on.
|
||||
|
||||
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
||||
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
||||
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
||||
tables between utf-8 bytes and unicode strings.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2 ** 8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2 ** 8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
def get_pairs(word):
|
||||
"""
|
||||
Return set of symbol pairs in a word.
|
||||
|
||||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||||
"""
|
||||
pairs = set()
|
||||
prev_char = word[0]
|
||||
for char in word[1:]:
|
||||
pairs.add((prev_char, char))
|
||||
prev_char = char
|
||||
return pairs
|
||||
|
||||
|
||||
class GPT2Tokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
Construct a GPT-2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||
|
||||
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
||||
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
||||
|
||||
::
|
||||
|
||||
>>> from transformers import GPT2Tokenizer
|
||||
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
||||
>>> tokenizer("Hello world")['input_ids']
|
||||
[15496, 995]
|
||||
>>> tokenizer(" Hello world")['input_ids']
|
||||
[18435, 995]
|
||||
|
||||
You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you
|
||||
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
||||
|
||||
.. note::
|
||||
|
||||
When used with ``is_split_into_words=True``, this tokenizer will add a space before each word (even the first
|
||||
one).
|
||||
|
||||
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
|
||||
Users should refer to this superclass for more information regarding those methods.
|
||||
|
||||
Args:
|
||||
vocab_file (:obj:`str`):
|
||||
Path to the vocabulary file.
|
||||
merges_file (:obj:`str`):
|
||||
Path to the merges file.
|
||||
errors (:obj:`str`, `optional`, defaults to :obj:`"replace"`):
|
||||
Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode
|
||||
<https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information.
|
||||
unk_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
bos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
|
||||
The beginning of sequence token.
|
||||
eos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
|
||||
The end of sequence token.
|
||||
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
||||
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
merges_file,
|
||||
errors="replace",
|
||||
unk_token="<|endoftext|>",
|
||||
bos_token="<|endoftext|>",
|
||||
eos_token="<|endoftext|>",
|
||||
add_prefix_space=False,
|
||||
**kwargs
|
||||
):
|
||||
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
||||
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
||||
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
||||
super().__init__(
|
||||
errors=errors,
|
||||
unk_token=unk_token,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
add_prefix_space=add_prefix_space,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
||||
self.encoder = json.load(vocab_handle)
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self.errors = errors # how to handle errors in decoding
|
||||
self.byte_encoder = bytes_to_unicode()
|
||||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||||
with open(merges_file, encoding="utf-8") as merges_handle:
|
||||
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
||||
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
||||
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
||||
self.cache = {}
|
||||
self.add_prefix_space = add_prefix_space
|
||||
|
||||
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
||||
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return len(self.encoder)
|
||||
|
||||
def get_vocab(self):
|
||||
return dict(self.encoder, **self.added_tokens_encoder)
|
||||
|
||||
def bpe(self, token):
|
||||
if token in self.cache:
|
||||
return self.cache[token]
|
||||
word = tuple(token)
|
||||
pairs = get_pairs(word)
|
||||
|
||||
if not pairs:
|
||||
return token
|
||||
|
||||
while True:
|
||||
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
||||
if bigram not in self.bpe_ranks:
|
||||
break
|
||||
first, second = bigram
|
||||
new_word = []
|
||||
i = 0
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
else:
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
i += 2
|
||||
else:
|
||||
new_word.append(word[i])
|
||||
i += 1
|
||||
new_word = tuple(new_word)
|
||||
word = new_word
|
||||
if len(word) == 1:
|
||||
break
|
||||
else:
|
||||
pairs = get_pairs(word)
|
||||
word = " ".join(word)
|
||||
self.cache[token] = word
|
||||
return word
|
||||
|
||||
def _tokenize(self, text):
|
||||
"""Tokenize a string."""
|
||||
bpe_tokens = []
|
||||
for token in re.findall(self.pat, text):
|
||||
token = "".join(
|
||||
self.byte_encoder[b] for b in token.encode("utf-8")
|
||||
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
||||
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
||||
return bpe_tokens
|
||||
|
||||
def _convert_token_to_id(self, token):
|
||||
"""Converts a token (str) in an id using the vocab."""
|
||||
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
||||
|
||||
def _convert_id_to_token(self, index):
|
||||
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||
return self.decoder.get(index)
|
||||
|
||||
def convert_tokens_to_string(self, tokens):
|
||||
"""Converts a sequence of tokens (string) in a single string."""
|
||||
text = "".join(tokens)
|
||||
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
||||
return text
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
if not os.path.isdir(save_directory):
|
||||
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
return
|
||||
vocab_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||||
)
|
||||
merge_file = os.path.join(
|
||||
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
||||
)
|
||||
|
||||
with open(vocab_file, "w", encoding="utf-8") as f:
|
||||
f.write(json.dumps(self.encoder, ensure_ascii=False))
|
||||
|
||||
index = 0
|
||||
with open(merge_file, "w", encoding="utf-8") as writer:
|
||||
writer.write("#version: 0.2\n")
|
||||
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
||||
if index != token_index:
|
||||
logger.warning(
|
||||
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
||||
" Please check that the tokenizer is not corrupted!"
|
||||
)
|
||||
index = token_index
|
||||
writer.write(" ".join(bpe_tokens) + "\n")
|
||||
index += 1
|
||||
|
||||
return vocab_file, merge_file
|
||||
|
||||
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
||||
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
||||
if is_split_into_words or add_prefix_space:
|
||||
text = " " + text
|
||||
return (text, kwargs)
|
||||
|
||||
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
||||
input_ids = []
|
||||
for is_user, text in conversation.iter_texts():
|
||||
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
|
||||
if len(input_ids) > self.model_max_length:
|
||||
input_ids = input_ids[-self.model_max_length :]
|
||||
return input_ids
|
|
@ -0,0 +1,187 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes for OpenAI GPT."""
|
||||
|
||||
|
||||
import json
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple
|
||||
|
||||
from tokenizers import pre_tokenizers
|
||||
|
||||
from transformers.tokenization_utils_base import BatchEncoding
|
||||
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
||||
from transformers.utils import logging
|
||||
from .tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.pipelines.conversational import Conversation
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
|
||||
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
|
||||
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
|
||||
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
|
||||
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
|
||||
},
|
||||
"merges_file": {
|
||||
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
|
||||
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
|
||||
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
|
||||
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
|
||||
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
|
||||
},
|
||||
"tokenizer_file": {
|
||||
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
|
||||
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
|
||||
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
|
||||
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
|
||||
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
|
||||
},
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"gpt2": 1024,
|
||||
"gpt2-medium": 1024,
|
||||
"gpt2-large": 1024,
|
||||
"gpt2-xl": 1024,
|
||||
"distilgpt2": 1024,
|
||||
}
|
||||
|
||||
|
||||
class GPT2TokenizerFast(PreTrainedTokenizerFast):
|
||||
"""
|
||||
Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's `tokenizers` library). Based on byte-level
|
||||
Byte-Pair-Encoding.
|
||||
|
||||
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
||||
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
||||
|
||||
::
|
||||
|
||||
>>> from transformers import GPT2TokenizerFast
|
||||
>>> tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
|
||||
>>> tokenizer("Hello world")['input_ids']
|
||||
[15496, 995]
|
||||
>>> tokenizer(" Hello world")['input_ids']
|
||||
[18435, 995]
|
||||
|
||||
You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you
|
||||
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
||||
|
||||
.. note::
|
||||
|
||||
When used with ``is_split_into_words=True``, this tokenizer needs to be instantiated with
|
||||
``add_prefix_space=True``.
|
||||
|
||||
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
|
||||
methods. Users should refer to this superclass for more information regarding those methods.
|
||||
|
||||
Args:
|
||||
vocab_file (:obj:`str`):
|
||||
Path to the vocabulary file.
|
||||
merges_file (:obj:`str`):
|
||||
Path to the merges file.
|
||||
errors (:obj:`str`, `optional`, defaults to :obj:`"replace"`):
|
||||
Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode
|
||||
<https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information.
|
||||
unk_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
bos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
|
||||
The beginning of sequence token.
|
||||
eos_token (:obj:`str`, `optional`, defaults to :obj:`<|endoftext|>`):
|
||||
The end of sequence token.
|
||||
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
||||
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
|
||||
trim_offsets (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
||||
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
slow_tokenizer_class = GPT2Tokenizer
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
merges_file,
|
||||
tokenizer_file=None,
|
||||
unk_token="<|endoftext|>",
|
||||
bos_token="<|endoftext|>",
|
||||
eos_token="<|endoftext|>",
|
||||
add_prefix_space=False,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
vocab_file,
|
||||
merges_file,
|
||||
tokenizer_file=tokenizer_file,
|
||||
unk_token=unk_token,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
add_prefix_space=add_prefix_space,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
||||
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
||||
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
||||
pre_tok_state["add_prefix_space"] = add_prefix_space
|
||||
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
||||
|
||||
self.add_prefix_space = add_prefix_space
|
||||
|
||||
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
||||
is_split_into_words = kwargs.get("is_split_into_words", False)
|
||||
assert self.add_prefix_space or not is_split_into_words, (
|
||||
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
||||
"to use it with pretokenized inputs."
|
||||
)
|
||||
|
||||
return super()._batch_encode_plus(*args, **kwargs)
|
||||
|
||||
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
||||
is_split_into_words = kwargs.get("is_split_into_words", False)
|
||||
|
||||
assert self.add_prefix_space or not is_split_into_words, (
|
||||
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
||||
"to use it with pretokenized inputs."
|
||||
)
|
||||
|
||||
return super()._encode_plus(*args, **kwargs)
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
||||
return tuple(files)
|
||||
|
||||
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
||||
"""This corresponds to DialoGPT variants of models."""
|
||||
input_ids = []
|
||||
for is_user, text in conversation.iter_texts():
|
||||
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
|
||||
|
||||
if len(input_ids) > self.model_max_length:
|
||||
input_ids = input_ids[-self.model_max_length :]
|
||||
return input_ids
|
|
@ -0,0 +1,134 @@
|
|||
# flake8: noqa
|
||||
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
||||
# module, but to preserve other warnings. So, don't check this module at all.
|
||||
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from transformers.file_utils import (
|
||||
_BaseLazyModule,
|
||||
is_flax_available,
|
||||
is_tf_available,
|
||||
is_tokenizers_available,
|
||||
is_torch_available,
|
||||
)
|
||||
|
||||
|
||||
_import_structure = {
|
||||
"configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig"],
|
||||
"tokenization_roberta": ["RobertaTokenizer"],
|
||||
}
|
||||
|
||||
if is_tokenizers_available():
|
||||
_import_structure["tokenization_roberta_fast"] = ["RobertaTokenizerFast"]
|
||||
|
||||
if is_torch_available():
|
||||
_import_structure["modeling_roberta"] = [
|
||||
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"RobertaForCausalLM",
|
||||
"RobertaForMaskedLM",
|
||||
"RobertaForMultipleChoice",
|
||||
"RobertaForQuestionAnswering",
|
||||
"RobertaForSequenceClassification",
|
||||
"RobertaForTokenClassification",
|
||||
"RobertaModel",
|
||||
]
|
||||
|
||||
if is_tf_available():
|
||||
_import_structure["modeling_tf_roberta"] = [
|
||||
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"TFRobertaForMaskedLM",
|
||||
"TFRobertaForMultipleChoice",
|
||||
"TFRobertaForQuestionAnswering",
|
||||
"TFRobertaForSequenceClassification",
|
||||
"TFRobertaForTokenClassification",
|
||||
"TFRobertaMainLayer",
|
||||
"TFRobertaModel",
|
||||
"TFRobertaPreTrainedModel",
|
||||
]
|
||||
|
||||
if is_flax_available():
|
||||
_import_structure["modeling_flax_roberta"] = [
|
||||
"FlaxRobertaForMaskedLM",
|
||||
"FlaxRobertaForMultipleChoice",
|
||||
"FlaxRobertaForQuestionAnswering",
|
||||
"FlaxRobertaForSequenceClassification",
|
||||
"FlaxRobertaForTokenClassification",
|
||||
"FlaxRobertaModel",
|
||||
"FlaxRobertaPreTrainedModel",
|
||||
]
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig
|
||||
from .tokenization_roberta import RobertaTokenizer
|
||||
|
||||
if is_tokenizers_available():
|
||||
from .tokenization_roberta_fast import RobertaTokenizerFast
|
||||
|
||||
if is_torch_available():
|
||||
from .modeling_roberta import (
|
||||
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
RobertaForCausalLM,
|
||||
RobertaForMaskedLM,
|
||||
RobertaForMultipleChoice,
|
||||
RobertaForQuestionAnswering,
|
||||
RobertaForSequenceClassification,
|
||||
RobertaForTokenClassification,
|
||||
RobertaModel,
|
||||
)
|
||||
|
||||
if is_tf_available():
|
||||
from .modeling_tf_roberta import (
|
||||
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
TFRobertaForMaskedLM,
|
||||
TFRobertaForMultipleChoice,
|
||||
TFRobertaForQuestionAnswering,
|
||||
TFRobertaForSequenceClassification,
|
||||
TFRobertaForTokenClassification,
|
||||
TFRobertaMainLayer,
|
||||
TFRobertaModel,
|
||||
TFRobertaPreTrainedModel,
|
||||
)
|
||||
|
||||
if is_flax_available():
|
||||
from .modeling_tf_roberta import (
|
||||
FlaxRobertaForMaskedLM,
|
||||
FlaxRobertaForMultipleChoice,
|
||||
FlaxRobertaForQuestionAnswering,
|
||||
FlaxRobertaForSequenceClassification,
|
||||
FlaxRobertaForTokenClassification,
|
||||
FlaxRobertaModel,
|
||||
FlaxRobertaPreTrainedModel,
|
||||
)
|
||||
|
||||
else:
|
||||
import importlib
|
||||
import os
|
||||
import sys
|
||||
|
||||
class _LazyModule(_BaseLazyModule):
|
||||
"""
|
||||
Module class that surfaces all objects but only performs associated imports when the objects are requested.
|
||||
"""
|
||||
|
||||
__file__ = globals()["__file__"]
|
||||
__path__ = [os.path.dirname(__file__)]
|
||||
|
||||
def _get_module(self, module_name: str):
|
||||
return importlib.import_module("." + module_name, self.__name__)
|
||||
|
||||
sys.modules[__name__] = _LazyModule(__name__, _import_structure)
|
|
@ -0,0 +1,64 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" RoBERTa configuration """
|
||||
|
||||
from transformers.utils import logging
|
||||
from ..bert.configuration_bert import BertConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
|
||||
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
|
||||
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
|
||||
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
|
||||
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
|
||||
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class RobertaConfig(BertConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a :class:`~transformers.RobertaModel` or a
|
||||
:class:`~transformers.TFRobertaModel`. It is used to instantiate a RoBERTa model according to the specified
|
||||
arguments, defining the model architecture.
|
||||
|
||||
|
||||
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
||||
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
||||
|
||||
The :class:`~transformers.RobertaConfig` class directly inherits :class:`~transformers.BertConfig`. It reuses the
|
||||
same defaults. Please check the parent class for more information.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> from transformers import RobertaConfig, RobertaModel
|
||||
|
||||
>>> # Initializing a RoBERTa configuration
|
||||
>>> configuration = RobertaConfig()
|
||||
|
||||
>>> # Initializing a model from the configuration
|
||||
>>> model = RobertaModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
"""
|
||||
model_type = "roberta"
|
||||
|
||||
def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs):
|
||||
"""Constructs RobertaConfig."""
|
||||
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,253 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tokenization classes for RoBERTa."""
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from transformers.tokenization_utils import AddedToken
|
||||
from transformers.utils import logging
|
||||
from ..gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {
|
||||
"vocab_file": "vocab.json",
|
||||
"merges_file": "merges.txt",
|
||||
}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {
|
||||
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
|
||||
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
|
||||
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
|
||||
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
|
||||
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
|
||||
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json",
|
||||
},
|
||||
"merges_file": {
|
||||
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
|
||||
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
|
||||
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
|
||||
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
|
||||
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
|
||||
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt",
|
||||
},
|
||||
}
|
||||
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||
"roberta-base": 512,
|
||||
"roberta-large": 512,
|
||||
"roberta-large-mnli": 512,
|
||||
"distilroberta-base": 512,
|
||||
"roberta-base-openai-detector": 512,
|
||||
"roberta-large-openai-detector": 512,
|
||||
}
|
||||
|
||||
|
||||
class RobertaTokenizer(GPT2Tokenizer):
|
||||
"""
|
||||
Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
|
||||
|
||||
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
||||
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
||||
|
||||
::
|
||||
|
||||
>>> from transformers import RobertaTokenizer
|
||||
>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
||||
>>> tokenizer("Hello world")['input_ids']
|
||||
[0, 31414, 232, 328, 2]
|
||||
>>> tokenizer(" Hello world")['input_ids']
|
||||
[0, 20920, 232, 2]
|
||||
|
||||
You can get around that behavior by passing ``add_prefix_space=True`` when instantiating this tokenizer or when you
|
||||
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
||||
|
||||
.. note::
|
||||
|
||||
When used with ``is_split_into_words=True``, this tokenizer will add a space before each word (even the first
|
||||
one).
|
||||
|
||||
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
|
||||
Users should refer to this superclass for more information regarding those methods.
|
||||
|
||||
Args:
|
||||
vocab_file (:obj:`str`):
|
||||
Path to the vocabulary file.
|
||||
merges_file (:obj:`str`):
|
||||
Path to the merges file.
|
||||
errors (:obj:`str`, `optional`, defaults to :obj:`"replace"`):
|
||||
Paradigm to follow when decoding bytes to UTF-8. See `bytes.decode
|
||||
<https://docs.python.org/3/library/stdtypes.html#bytes.decode>`__ for more information.
|
||||
bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`):
|
||||
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
||||
|
||||
.. note::
|
||||
|
||||
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
||||
sequence. The token used is the :obj:`cls_token`.
|
||||
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
|
||||
The end of sequence token.
|
||||
|
||||
.. note::
|
||||
|
||||
When building a sequence using special tokens, this is not the token that is used for the end of
|
||||
sequence. The token used is the :obj:`sep_token`.
|
||||
sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
|
||||
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
||||
sequence classification or for a text and a question for question answering. It is also used as the last
|
||||
token of a sequence built with special tokens.
|
||||
cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`):
|
||||
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
||||
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
||||
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
|
||||
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||||
token instead.
|
||||
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
|
||||
The token used for padding, for example when batching sequences of different lengths.
|
||||
mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`):
|
||||
The token used for masking values. This is the token used when training this model with masked language
|
||||
modeling. This is the token which the model will try to predict.
|
||||
add_prefix_space (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
||||
other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file,
|
||||
merges_file,
|
||||
errors="replace",
|
||||
bos_token="<s>",
|
||||
eos_token="</s>",
|
||||
sep_token="</s>",
|
||||
cls_token="<s>",
|
||||
unk_token="<unk>",
|
||||
pad_token="<pad>",
|
||||
mask_token="<mask>",
|
||||
add_prefix_space=False,
|
||||
**kwargs
|
||||
):
|
||||
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
||||
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
||||
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
||||
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
||||
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
||||
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
||||
|
||||
# Mask token behave like a normal word, i.e. include the space before it
|
||||
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
||||
|
||||
super().__init__(
|
||||
vocab_file=vocab_file,
|
||||
merges_file=merges_file,
|
||||
errors=errors,
|
||||
bos_token=bos_token,
|
||||
eos_token=eos_token,
|
||||
unk_token=unk_token,
|
||||
sep_token=sep_token,
|
||||
cls_token=cls_token,
|
||||
pad_token=pad_token,
|
||||
mask_token=mask_token,
|
||||
add_prefix_space=add_prefix_space,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||
adding special tokens. A RoBERTa sequence has the following format:
|
||||
|
||||
- single sequence: ``<s> X </s>``
|
||||
- pair of sequences: ``<s> A </s></s> B </s>``
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs to which the special tokens will be added.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
||||
"""
|
||||
if token_ids_1 is None:
|
||||
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
sep = [self.sep_token_id]
|
||||
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||||
special tokens using the tokenizer ``prepare_for_model`` method.
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether or not the token list is already formatted with special tokens for the model.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||||
)
|
||||
|
||||
if token_ids_1 is None:
|
||||
return [1] + ([0] * len(token_ids_0)) + [1]
|
||||
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not
|
||||
make use of token type ids, therefore a list of zeros is returned.
|
||||
|
||||
Args:
|
||||
token_ids_0 (:obj:`List[int]`):
|
||||
List of IDs.
|
||||
token_ids_1 (:obj:`List[int]`, `optional`):
|
||||
Optional second list of IDs for sequence pairs.
|
||||
|
||||
Returns:
|
||||
:obj:`List[int]`: List of zeros.
|
||||
"""
|
||||
sep = [self.sep_token_id]
|
||||
cls = [self.cls_token_id]
|
||||
|
||||
if token_ids_1 is None:
|
||||
return len(cls + token_ids_0 + sep) * [0]
|
||||
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
||||
|
||||
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
||||
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
||||
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
|
||||
text = " " + text
|
||||
return (text, kwargs)
|
Loading…
Reference in New Issue