Update README_CN.md
This commit is contained in:
parent
0d47d151be
commit
1ce209a8bd
24
README_CN.md
24
README_CN.md
|
@ -24,14 +24,27 @@ DeepKE 是一个支持<b>低资源、长篇章</b>的知识抽取工具,可以
|
|||
|
||||
<br>
|
||||
|
||||
# 新版特性
|
||||
## 2021年12月
|
||||
- 加入`dockerfile`以便自动创建环境
|
||||
## 2021年11月
|
||||
- 发布DeepKE demo页面,支持实时抽取,无需部署和训练模型
|
||||
- 发布DeepKE文档,包含DeepKE源码和数据集等详细信息
|
||||
## 2021年10月
|
||||
- `pip install deepke`
|
||||
- deepke-v2.0发布
|
||||
## 2021年5月
|
||||
- `pip install deepke`
|
||||
- deepke-v1.0发布
|
||||
|
||||
### 进行预测
|
||||
|
||||
# 进行预测
|
||||
下面使用一个demo展示预测过程<br>
|
||||
<img src="pics/demo.gif" width="636" height="494" align=center>
|
||||
|
||||
<br>
|
||||
|
||||
## 模型架构
|
||||
# 模型架构
|
||||
|
||||
Deepke的架构图如下所示
|
||||
|
||||
|
@ -39,11 +52,14 @@ Deepke的架构图如下所示
|
|||
<img src="pics/architectures.png">
|
||||
</h3>
|
||||
|
||||
DeepKE包括了三个模块,可以进行命名实体识别、关系抽取以及属性抽取任务,在各个模块下包括各自的子模块。其中关系抽取模块就有常规模块、文档级抽取模块以及低资源少样本模块。在每一个子模块中,包含实现分词、预处理等功能的一个工具集合,以及编码、训练和预测部分。
|
||||
- DeepKE为三个知识抽取功能(命名实体识别、关系抽取和属性抽取)设计了一个统一的框架
|
||||
- 可以在不同场景下实现不同功能。比如,可以在标准全监督、低资源少样本和文档级设定下进行关系抽取
|
||||
- 每一个应用场景由三个部分组成:Data部分包含Tokenizer、Preprocessor和Loader,Model部分包含Module、Encoder和Forwarder,Core部分包含Training、Evaluation和Prediction
|
||||
|
||||
|
||||
<br>
|
||||
|
||||
## 快速上手
|
||||
# 快速上手
|
||||
|
||||
DeepKE支持pip安装使用,以常规全监督设定关系抽取为例,经过以下五个步骤就可以实现一个常规关系抽取模型
|
||||
|
||||
|
|
Loading…
Reference in New Issue