Start ===== Model Framework --------------- .. image:: ./_static/architectures.png DeepKE contains three modules for named entity recognition, relation extraction and attribute extraction, the three tasks respectively. Each module has its own submodules. For example, there are standard, document-level and few-shot submodules in the attribute extraction modular. Each submodule compose of three parts: a collection of tools, which can function as tokenizer, dataloader, preprocessor and the like, a encoder and a part for training and prediction Dataset ------- We use the following datasets in our experiments: +--------------------------+-----------+------------------+----------+------------+ | Task | Settings | Corpus | Language | Model | +==========================+===========+==================+==========+============+ | | | CoNLL-2003 | English | | | | Standard +------------------+----------+ BERT | | | | People's Daily | Chinese | | | +-----------+------------------+----------+------------+ | | | CoNLL-2003 | | | | | +------------------+ | | | Name Entity Recognition | | MIT Movie | | | | | Few-shot +------------------+ English | LightNER | | | | MIT Restaurant | | | | | +------------------+ | | | | | ATIS | | | +--------------------------+-----------+------------------+----------+------------+ | | | | | CNN | | | | | +------------+ | | | | | RNN | | | | | +------------+ | | | | | Capsule | | | Standard | DuIE | Chinese +------------+ | | | | | GCN | | | | | +------------+ | | | | | Transformer| | | | | +------------+ | | | | | BERT | | +-----------+------------------+----------+------------+ | Relation Extraction | | SEMEVAL(8-shot) | | | | | +------------------+ | | | | | SEMEVAL(16-shot) | | | | | Few-shot +------------------+ English | KnowPrompt | | | | SEMEVAL(32-shot) | | | | | +------------------+ | | | | | SEMEVAL(Full) | | | | +-----------+------------------+----------+------------+ | | | DocRED | | | | | +------------------+ | | | | Document | CDR | English | DocuNet | | | +------------------+ | | | | | GDA | | | +--------------------------+-----------+------------------+----------+------------+ | | | | | CNN | | | | | +------------+ | | | | | RNN | | | | | +------------+ | | |Triplet Extraction| | Capsule | | Attribute Extraction | Standard |Dataset | Chinese +------------+ | | | | | GCN | | | | | +------------+ | | | | | Transformer| | | | | +------------+ | | | | | BERT | +--------------------------+-----------+------------------+----------+------------+ Get Start --------- If you want to use our code , you can do as follow: .. code-block:: python git clone https://github.com/zjunlp/DeepKE.git cd DeepKE