Documentation PyPI GitHub

简体中文 | English


A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting **low-resource** and **document-level** scenarios. It provides three functions based **PyTorch**, including **Named Entity Recognition**, **Relation Extraciton** and **Attribute Extraction**.
## Online Demo [demo](https://deepke.openkg.cn) ### Prediction There is a demonstration of prediction.

## Model Framework

Figure 1: The framework of DeepKE

- DeepKE contains three modules for **named entity recognition**, **relation extraction** and **attribute extraction**, the three tasks respectively. - Each module has its own submodules. For example, there are **standard**, **document-level** and **few-shot** submodules in the attribute extraction modular. - Each submodule compose of three parts: a **collection of tools**, which can function as tokenizer, dataloader, preprocessor and the like, a **encoder** and a part for **training and prediction**
## Quickstart Take the fully supervised attribute extraction for example. 1. Download basic codes `git clone https://github.com/zjunlp/DeepKE.git ` 2. Create a virtual environment (recommend `anaconda`) `conda create -n deepke python=3.8` 3. Enter the environment `conda activate deepke` 4. Install dependent packages - If use deepke directly: `pip install deepke` - If modify source codes before usage: run `python setup.py install` firstly, after modification, run `python setup.py develop` 5. Enter the corresponding directory `cd DeepKE/example/re/standard` 6. Train `python run.py` (Parameters for training can be changed in the `conf` folder) 7. Predict `python predict.py`(Parameters for prediction can be changed in the `conf` folder) ### Requirements > python == 3.8 - torch == 1.5 - hydra-core == 1.0.6 - tensorboard == 2.4.1 - matplotlib == 3.4.1 - transformers == 3.4.0 - jieba == 0.42.1 - scikit-learn == 0.24.1 - pytorch-transformers == 1.2.0 - seqeval == 1.2.2 - tqdm == 4.60.0 - opt-einsum==3.3.0 - ujson ### Introduction of Three Functions #### 1. Named Entity Recognition - Named entity recognition seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, organizations, etc. - The data is stored in `.txt` files. Some instances as following: | Sentence | Person | Location | Organization | | :----------------------------------------------------------: | :------------------------: | :------------: | :----------------------------: | | 本报北京9月4日讯记者杨涌报道:部分省区人民日报宣传发行工作座谈会9月3日在4日在京举行。 | 杨涌 | 北京 | 人民日报 | | 《红楼梦》是中央电视台和中国电视剧制作中心根据中国古典文学名著《红楼梦》摄制于1987年的一部古装连续剧,由王扶林导演,周汝昌、王蒙、周岭等多位红学家参与制作。 | 王扶林,周汝昌,王蒙,周岭 | 中国 | 中央电视台,中国电视剧制作中心 | | 秦始皇兵马俑位于陕西省西安市,1961年被国务院公布为第一批全国重点文物保护单位,是世界八大奇迹之一。 | 秦始皇 | 陕西省,西安市 | 国务院 | - Read the detailed process in specific README - **[STANDARD (Fully Supervised)](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/ner/standard)** - The standard module is implemented by the pretrained model *BERT*. - Enter `DeepKE/example/ner/standard`. - The dataset and parameters can be customized in the `data` folder and `conf` folder respectively. - **Train**: `python run.py` - **Predict**: `python predict.py` - **[FEW-SHOT](https://github.com/zjunlp/DeepKE/tree/test_new_deepke/example/ner/few-shot)** - This module is in the low-resouce scenario. - Enter `DeepKE/example/ner/few-shot`. - The directory where the model is loaded and saved and the configuration parameters can be cusomized in the `conf` folder. - **Train with *CoNLL-2003***: `python run.py` - **Train in the few-shot scenario**: `python run.py +train=few_shot`. Users can modify `load_path` in `conf/train/few_shot.yaml` with the use of existing loaded model. - **Predict**: add `- predict` to `conf/config.yaml`, modify `loda_path` as the model path and `write_path` as the path where the predicted results are saved in `conf/predict.yaml`, and then run `python predict.py` #### 2. Relation Extraction - Relationship extraction is the task of extracting semantic relations between entities from a unstructured text. - The data is stored in `.csv` files. Some instances as following: | Sentence | Relation | Head | Head_offset | Tail | Tail_offset | | :----------------------------------------------------: | :------: | :--------: | :---------: | :--------: | :---------: | | 《岳父也是爹》是王军执导的电视剧,由马恩然、范明主演。 | 导演 | 岳父也是爹 | 1 | 王军 | 8 | | 《九玄珠》是在纵横中文网连载的一部小说,作者是龙马。 | 连载网站 | 九玄珠 | 1 | 纵横中文网 | 7 | | 提起杭州的美景,西湖总是第一个映入脑海的词语。 | 所在城市 | 西湖 | 8 | 杭州 | 2 | - Read the detailed process in specific README - **[STANDARD (Fully Supervised)](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/re/standard)** - The standard module is implemented by common deep learning models, including CNN, RNN, Capsule, GCN, Transformer and the pretrained model. - Enter the `DeepKE/example/re/standard` folder. - The dataset and parameters can be customized in the `data` folder and `conf` folder respectively. - **Train**: `python run.py` - **Predict**: `python predict.py` - **[FEW-SHOT](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/re/few-shot)** - This module is in the low-resouce scenario. - Enter `DeepKE/example/re/few-shot` . - **Train**: `python run.py` Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`. - **Predict**: `python predict.py` - **[DOCUMENT](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/re/document)** - Download the model `train_distant.json` from [*Google Drive*](https://drive.google.com/drive/folders/1c5-0YwnoJx8NS6CV2f-NoTHR__BdkNqw) to `data/`. - Enter `DeepKE/example/re/document` . - **Train**: `python run.py` Start with the model trained last time: modify `train_from_saved_model` in `conf/train.yaml`as the path where the model trained last time was saved. And the path saving logs generated in training can be customized by `log_dir`. - **Predict**: `python predict.py` #### 3. Attribute Extraction - Attribute extraction is to extract attributes for entities in a unstructed text. - The data is stored in `.csv` files. Some instances as following: | Sentence | Att | Ent | Ent_offset | Val | Val_offset | | :----------------------------------------------------------: | :------: | :------: | :--------: | :-----------: | :--------: | | 张冬梅,女,汉族,1968年2月生,河南淇县人 | 民族 | 张冬梅 | 0 | 汉族 | 6 | | 杨缨,字绵公,号钓溪,松溪县人,祖籍将乐,是北宋理学家杨时的七世孙 | 朝代 | 杨缨 | 0 | 北宋 | 22 | | 2014年10月1日许鞍华执导的电影《黄金时代》上映 | 上映时间 | 黄金时代 | 19 | 2014年10月1日 | 0 | - Read the detailed process in specific README - **[STANDARD (Fully Supervised)](https://github.com/zjunlp/deepke/blob/test_new_deepke/example/ae/standard)** - The standard module is implemented by common deep learning models, including CNN, RNN, Capsule, GCN, Transformer and the pretrained model. - Enter the `DeepKE/example/ae/standard` folder. - The dataset and parameters can be customized in the `data` folder and `conf` folder respectively. - **Train**: `python run.py` - **Predict**: `python predict.py`
## Tips 1. Using nearest mirror, like [THU](https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/) in China, will speed up the installation of *Anaconda*. 2. Using nearest mirror, like [aliyun](http://mirrors.aliyun.com/pypi/simple/) in China, will speed up `pip install XXX`. 3. When encountering `ModuleNotFoundError: No module named 'past'`,run `pip install future` . 4. It's slow to install the pretrained language models online. Recommend download pretrained models before use and save them in the `pretrained` folder. Read `README.md` in every task directory to check the specific requirement for saving pretrained models.
## Developers Zhejiang University: Ningyu Zhang, Liankuan Tao, Haiyang Yu, Xiang Chen, Xin Xu, Xi Tian, Lei Li, Zhoubo Li, Shumin Deng, Yunzhi Yao, Hongbin Ye, Xin Xie, Guozhou Zheng, Huajun Chen Alibaba DAMO: Chuanqi Tan, Fei Huang