deepke/module/CNN.py

115 lines
4.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class GELU(nn.Module):
def __init__(self):
super(GELU, self).__init__()
def forward(self, x):
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class CNN(nn.Module):
"""
nlp 里为了保证输出的句长 = 输入的句长,一般使用奇数 kernel_size如 [3, 5, 7, 9]
当然也可以不等长输出keep_length 设为 False
此时padding = k // 2
stride 一般为 1
"""
def __init__(self, config):
"""
in_channels : 一般就是 word embedding 的维度,或者 hidden size 的维度
out_channels : int
kernel_sizes : list 为了保证输出长度=输入长度,必须为奇数: 3, 5, 7...
activation : [relu, lrelu, prelu, selu, celu, gelu, sigmoid, tanh]
pooling_strategy : [max, avg, cls]
dropout: : float
"""
super(CNN, self).__init__()
# self.xxx = config.xxx
self.in_channels = config.in_channels
self.out_channels = config.out_channels
self.kernel_sizes = config.kernel_sizes
self.activation = config.activation
self.pooling_strategy = config.pooling_strategy
self.dropout = config.dropout
self.keep_length = config.keep_length
for kernel_size in self.kernel_sizes:
assert kernel_size % 2 == 1, "kernel size has to be odd numbers."
# convolution
self.convs = nn.ModuleList([
nn.Conv1d(in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=k,
stride=1,
padding=k // 2 if self.keep_length else 0,
dilation=1,
groups=1,
bias=False) for k in self.kernel_sizes
])
# activation function
assert self.activation in ['relu', 'lrelu', 'prelu', 'selu', 'celu', 'gelu', 'sigmoid', 'tanh'], \
'activation function must choose from [relu, lrelu, prelu, selu, celu, gelu, sigmoid, tanh]'
self.activations = nn.ModuleDict([
['relu', nn.ReLU()],
['lrelu', nn.LeakyReLU()],
['prelu', nn.PReLU()],
['selu', nn.SELU()],
['celu', nn.CELU()],
['gelu', GELU()],
['sigmoid', nn.Sigmoid()],
['tanh', nn.Tanh()],
])
# pooling
assert self.pooling_strategy in ['max', 'avg', 'cls'], 'pooling strategy must choose from [max, avg, cls]'
self.dropout = nn.Dropout(self.dropout)
def forward(self, x, mask=None):
"""
:param x: torch.Tensor [batch_size, seq_max_length, input_size], [B, L, H] 一般是经过embedding后的值
:param mask: [batch_size, max_len], 句长部分为0padding部分为1。不影响卷积运算max-pool一定不会pool到pad为0的位置
:return:
"""
# [B, L, H] -> [B, H, L] (注释:将 H 维度当作输入 channel 维度)
x = torch.transpose(x, 1, 2)
# convolution + activation [[B, H, L], ... ]
act_fn = self.activations[self.activation]
x = [act_fn(conv(x)) for conv in self.convs]
x = torch.cat(x, dim=1)
# mask
if mask is not None:
# [B, L] -> [B, 1, L]
mask = mask.unsqueeze(1)
x = x.masked_fill_(mask, 1e-12)
# pooling
# [[B, H, L], ... ] -> [[B, H], ... ]
if self.pooling_strategy == 'max':
xp = F.max_pool1d(x, kernel_size=x.size(2)).squeeze(2)
# 等价于 xp = torch.max(x, dim=2)[0]
elif self.pooling_strategy == 'avg':
x_len = mask.squeeze().eq(0).sum(-1).unsqueeze(-1).to(torch.float).to(device=mask.device)
xp = torch.sum(x, dim=-1) / x_len
else:
# self.pooling_strategy == 'cls'
xp = x[:, :, 0]
x = x.transpose(1, 2)
x = self.dropout(x)
xp = self.dropout(xp)
return x, xp # [B, L, Hs], [B, Hs]