deepke/models/GCN.py

32 lines
870 B
Python

import torch
import torch.nn as nn
from . import BasicModule
from module import Embedding
from module import GCN as GCNBlock
from utils import seq_len_to_mask
class GCN(BasicModule):
def __init__(self, cfg):
super(GCN, self).__init__()
if cfg.dim_strategy == 'cat':
cfg.input_size = cfg.word_dim + 2 * cfg.pos_dim
else:
cfg.input_size = cfg.word_dim
self.embedding = Embedding(cfg)
self.gcn = GCNBlock(cfg)
self.fc = nn.Linear(cfg.hidden_size, cfg.num_relations)
def forward(self, x):
word, lens, head_pos, tail_pos, adj = x['word'], x['lens'], x['head_pos'], x['tail_pos'], x['adj']
inputs = self.embedding(word, head_pos, tail_pos)
output = self.gcn(inputs, adj)
output = output.max(dim=1)[0]
output = self.fc(output)
return output