91 lines
2.9 KiB
Python
91 lines
2.9 KiB
Python
import torch
|
||
import logging
|
||
import matplotlib.pyplot as plt
|
||
from metrics import PRMetric
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
def train(epoch, model, dataloader, optimizer, criterion, device, writer, cfg):
|
||
model.train()
|
||
|
||
metric = PRMetric()
|
||
losses = []
|
||
|
||
for batch_idx, (x, y) in enumerate(dataloader, 1):
|
||
for key, value in x.items():
|
||
x[key] = value.to(device)
|
||
y = y.to(device)
|
||
|
||
optimizer.zero_grad()
|
||
y_pred = model(x)
|
||
|
||
if cfg.model_name == 'capsule':
|
||
loss = model.loss(y_pred, y)
|
||
else:
|
||
loss = criterion(y_pred, y)
|
||
|
||
loss.backward()
|
||
optimizer.step()
|
||
|
||
metric.update(y_true=y, y_pred=y_pred)
|
||
losses.append(loss.item())
|
||
|
||
data_total = len(dataloader.dataset)
|
||
data_cal = data_total if batch_idx == len(dataloader) else batch_idx * len(y)
|
||
if (cfg.train_log and batch_idx % cfg.log_interval == 0) or batch_idx == len(dataloader):
|
||
# p r f1 皆为 macro,因为micro时三者相同,定义为acc
|
||
acc, p, r, f1 = metric.compute()
|
||
logger.info(f'Train Epoch {epoch}: [{data_cal}/{data_total} ({100. * data_cal / data_total:.0f}%)]\t'
|
||
f'Loss: {loss.item():.6f}')
|
||
logger.info(f'Train Epoch {epoch}: Acc: {100. * acc:.2f}%\t'
|
||
f'macro metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]')
|
||
|
||
if cfg.show_plot and not cfg.only_comparison_plot:
|
||
if cfg.plot_utils == 'matplot':
|
||
plt.plot(losses)
|
||
plt.title(f'epoch {epoch} train loss')
|
||
plt.show()
|
||
|
||
if cfg.plot_utils == 'tensorboard':
|
||
for i in range(len(losses)):
|
||
writer.add_scalar(f'epoch_{epoch}_training_loss', losses[i], i)
|
||
|
||
return losses[-1]
|
||
|
||
|
||
def validate(epoch, model, dataloader, criterion, device, cfg):
|
||
model.eval()
|
||
|
||
metric = PRMetric()
|
||
losses = []
|
||
|
||
for batch_idx, (x, y) in enumerate(dataloader, 1):
|
||
for key, value in x.items():
|
||
x[key] = value.to(device)
|
||
y = y.to(device)
|
||
|
||
with torch.no_grad():
|
||
y_pred = model(x)
|
||
|
||
if cfg.model_name == 'capsule':
|
||
loss = model.loss(y_pred, y)
|
||
else:
|
||
loss = criterion(y_pred, y)
|
||
|
||
metric.update(y_true=y, y_pred=y_pred)
|
||
losses.append(loss.item())
|
||
|
||
loss = sum(losses) / len(losses)
|
||
acc, p, r, f1 = metric.compute()
|
||
data_total = len(dataloader.dataset)
|
||
|
||
if epoch >= 0:
|
||
logger.info(f'Valid Epoch {epoch}: [{data_total}/{data_total}](100%)\t Loss: {loss:.6f}')
|
||
logger.info(f'Valid Epoch {epoch}: Acc: {100. * acc:.2f}%\tmacro metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]')
|
||
else:
|
||
logger.info(f'Test Data: [{data_total}/{data_total}](100%)\t Loss: {loss:.6f}')
|
||
logger.info(f'Test Data: Acc: {100. * acc:.2f}%\tmacro metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]')
|
||
|
||
return f1, loss
|