600 lines
23 KiB
Plaintext
600 lines
23 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## relation extraction 实践\n",
|
||
"> Tutorial作者:余海阳(yuhaiyang@zju.edu.cn)\n",
|
||
"\n",
|
||
"在这个演示中,我们使用 `pretrain_language_model` 模型实现中文关系抽取。\n",
|
||
"希望在这个demo中帮助大家了解知识图谱构建过程中,三元组抽取构建的原理和常用方法。\n",
|
||
"\n",
|
||
"本demo使用 `python3` 运⾏。\n",
|
||
"\n",
|
||
"### 数据集\n",
|
||
"在这个示例中,我们采样了一些中文文本,抽取其中的三元组。\n",
|
||
"\n",
|
||
"sentence|relation|head|tail\n",
|
||
":---:|:---:|:---:|:---:\n",
|
||
"孔正锡在2005年以一部温馨的爱情电影《长腿叔叔》敲开电影界大门。|导演|长腿叔叔|孔正锡\n",
|
||
"《伤心的树》是吴宗宪的音乐作品,收录在《你比从前快乐》专辑中。|所属专辑|伤心的树|你比从前快乐\n",
|
||
"2000年8月,「天坛大佛」荣获「香港十大杰出工程项目」第四名。|所在城市|天坛大佛|香港\n",
|
||
"\n",
|
||
"\n",
|
||
"- train.csv: 包含6个训练三元组,文件的每一⾏表示一个三元组, 按句子、关系、头实体、尾实体排序,并用`,`分隔。\n",
|
||
"- valid.csv: 包含3个验证三元组,文件的每一⾏表示一个三元组, 按句子、关系、头实体、尾实体排序,并用`,`分隔。\n",
|
||
"- test.csv: 包含3个测试三元组,文件的每一⾏表示一个三元组, 按句子、关系、头实体、尾实体排序,并用`,`分隔。\n",
|
||
"- relation.csv: 包含4种关系三元组,文件的每一⾏表示一个三元组种类, 按头实体种类、尾实体种类、关系、序号排序,并用`,`分隔。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### BERT 原理回顾\n",
|
||
"\n",
|
||
"![BERT](img/Bert.png)\n",
|
||
"\n",
|
||
"原句经过bert编码后,可以得到丰富的语义信息。所得结果输入到双向LSTM中,输出的结果即可得到句子的关系信息。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 代码实践\n",
|
||
"\n",
|
||
"重要提示:\n",
|
||
"- 在使用预训练语言模型时,需要加载约500m的模型数据,所以更建议下载到本地后运行。此时只需要将 `lm_file` 值修改为本地文件夹的地址即可。具体预训练模型下载链接见:[transformers](https://huggingface.co/transformers/)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 使用pytorch运行神经网络,运行前确认是否安装\n",
|
||
"!pip install torch\n",
|
||
"!pip install matplotlib\n",
|
||
"!pip install transformers"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 导入所使用模块\n",
|
||
"import os\n",
|
||
"import csv\n",
|
||
"import math\n",
|
||
"import pickle\n",
|
||
"import logging\n",
|
||
"import torch\n",
|
||
"import torch.nn as nn\n",
|
||
"import torch.nn.functional as F\n",
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from torch import optim\n",
|
||
"from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence\n",
|
||
"from torch.utils.data import Dataset,DataLoader\n",
|
||
"from sklearn.metrics import precision_recall_fscore_support\n",
|
||
"from typing import List, Tuple, Dict, Any, Sequence, Optional, Union\n",
|
||
"from transformers import BertTokenizer, BertModel\n",
|
||
"\n",
|
||
"logger = logging.getLogger(__name__)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 模型调参的配置文件\n",
|
||
"class Config(object):\n",
|
||
" model_name = 'lm' # ['cnn', 'gcn', 'lm']\n",
|
||
" use_pcnn = True\n",
|
||
" min_freq = 1\n",
|
||
" pos_limit = 20\n",
|
||
" out_path = 'data/out' \n",
|
||
" batch_size = 2 \n",
|
||
" word_dim = 10\n",
|
||
" pos_dim = 5\n",
|
||
" dim_strategy = 'sum' # ['sum', 'cat']\n",
|
||
" out_channels = 20\n",
|
||
" intermediate = 10\n",
|
||
" kernel_sizes = [3, 5, 7]\n",
|
||
" activation = 'gelu'\n",
|
||
" pooling_strategy = 'max'\n",
|
||
" dropout = 0.3\n",
|
||
" epoch = 10\n",
|
||
" num_relations = 4\n",
|
||
" learning_rate = 3e-4\n",
|
||
" lr_factor = 0.7 # 学习率的衰减率\n",
|
||
" lr_patience = 3 # 学习率衰减的等待epoch\n",
|
||
" weight_decay = 1e-3 # L2正则\n",
|
||
" early_stopping_patience = 6\n",
|
||
" train_log = True\n",
|
||
" log_interval = 1\n",
|
||
" show_plot = True\n",
|
||
" only_comparison_plot = False\n",
|
||
" plot_utils = 'matplot'\n",
|
||
" lm_file = 'bert-base-chinese'\n",
|
||
"# lm_file = '/Users/yuhaiyang/transformers/bert-base-chinese'\n",
|
||
" lm_num_hidden_layers = 2\n",
|
||
" rnn_layers = 2\n",
|
||
" \n",
|
||
"cfg = Config()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 预处理过程所需要使用的函数\n",
|
||
"Path = str\n",
|
||
"\n",
|
||
"def load_csv(fp: Path, is_tsv: bool = False, verbose: bool = True) -> List:\n",
|
||
" if verbose:\n",
|
||
" logger.info(f'load csv from {fp}')\n",
|
||
"\n",
|
||
" dialect = 'excel-tab' if is_tsv else 'excel'\n",
|
||
" with open(fp, encoding='utf-8') as f:\n",
|
||
" reader = csv.DictReader(f, dialect=dialect)\n",
|
||
" return list(reader)\n",
|
||
"\n",
|
||
" \n",
|
||
"def load_pkl(fp: Path, verbose: bool = True) -> Any:\n",
|
||
" if verbose:\n",
|
||
" logger.info(f'load data from {fp}')\n",
|
||
"\n",
|
||
" with open(fp, 'rb') as f:\n",
|
||
" data = pickle.load(f)\n",
|
||
" return data\n",
|
||
"\n",
|
||
"\n",
|
||
"def save_pkl(data: Any, fp: Path, verbose: bool = True) -> None:\n",
|
||
" if verbose:\n",
|
||
" logger.info(f'save data in {fp}')\n",
|
||
"\n",
|
||
" with open(fp, 'wb') as f:\n",
|
||
" pickle.dump(data, f)\n",
|
||
" \n",
|
||
" \n",
|
||
"def _handle_relation_data(relation_data: List[Dict]) -> Dict:\n",
|
||
" rels = dict()\n",
|
||
" for d in relation_data:\n",
|
||
" rels[d['relation']] = {\n",
|
||
" 'index': int(d['index']),\n",
|
||
" 'head_type': d['head_type'],\n",
|
||
" 'tail_type': d['tail_type'],\n",
|
||
" }\n",
|
||
" return rels\n",
|
||
"\n",
|
||
"\n",
|
||
"def _add_relation_data(rels: Dict,data: List) -> None:\n",
|
||
" for d in data:\n",
|
||
" d['rel2idx'] = rels[d['relation']]['index']\n",
|
||
" d['head_type'] = rels[d['relation']]['head_type']\n",
|
||
" d['tail_type'] = rels[d['relation']]['tail_type']\n",
|
||
"\n",
|
||
"\n",
|
||
"def seq_len_to_mask(seq_len: Union[List, np.ndarray, torch.Tensor], max_len=None, mask_pos_to_true=True):\n",
|
||
" \"\"\"\n",
|
||
" 将一个表示sequence length的一维数组转换为二维的mask,默认pad的位置为1。\n",
|
||
" 转变 1-d seq_len到2-d mask.\n",
|
||
"\n",
|
||
" :param list, np.ndarray, torch.LongTensor seq_len: shape将是(B,)\n",
|
||
" :param int max_len: 将长度pad到这个长度。默认(None)使用的是seq_len中最长的长度。但在nn.DataParallel的场景下可能不同卡的seq_len会有\n",
|
||
" 区别,所以需要传入一个max_len使得mask的长度是pad到该长度。\n",
|
||
" :return: np.ndarray, torch.Tensor 。shape将是(B, max_length), 元素类似为bool或torch.uint8\n",
|
||
" \"\"\"\n",
|
||
" if isinstance(seq_len, list):\n",
|
||
" seq_len = np.array(seq_len)\n",
|
||
"\n",
|
||
" if isinstance(seq_len, np.ndarray):\n",
|
||
" seq_len = torch.from_numpy(seq_len)\n",
|
||
"\n",
|
||
" if isinstance(seq_len, torch.Tensor):\n",
|
||
" assert seq_len.dim() == 1, logger.error(f\"seq_len can only have one dimension, got {seq_len.dim()} != 1.\")\n",
|
||
" batch_size = seq_len.size(0)\n",
|
||
" max_len = int(max_len) if max_len else seq_len.max().long()\n",
|
||
" broad_cast_seq_len = torch.arange(max_len).expand(batch_size, -1).to(seq_len.device)\n",
|
||
" if mask_pos_to_true:\n",
|
||
" mask = broad_cast_seq_len.ge(seq_len.unsqueeze(1))\n",
|
||
" else:\n",
|
||
" mask = broad_cast_seq_len.lt(seq_len.unsqueeze(1))\n",
|
||
" else:\n",
|
||
" raise logger.error(\"Only support 1-d list or 1-d numpy.ndarray or 1-d torch.Tensor.\")\n",
|
||
"\n",
|
||
" return mask\n",
|
||
"\n",
|
||
"\n",
|
||
"def _lm_serialize(data: List[Dict], cfg):\n",
|
||
" logger.info('use bert tokenizer...')\n",
|
||
" tokenizer = BertTokenizer.from_pretrained(cfg.lm_file)\n",
|
||
" for d in data:\n",
|
||
" sent = d['sentence'].strip()\n",
|
||
" sent = sent.replace(d['head'], d['head_type'], 1).replace(d['tail'], d['tail_type'], 1)\n",
|
||
" sent += '[SEP]' + d['head'] + '[SEP]' + d['tail']\n",
|
||
" d['token2idx'] = tokenizer.encode(sent, add_special_tokens=True)\n",
|
||
" d['lens'] = len(d['token2idx'])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 预处理过程\n",
|
||
"logger.info('load raw files...')\n",
|
||
"train_fp = os.path.join('data/train.csv')\n",
|
||
"valid_fp = os.path.join('data/valid.csv')\n",
|
||
"test_fp = os.path.join('data/test.csv')\n",
|
||
"relation_fp = os.path.join('data/relation.csv')\n",
|
||
"\n",
|
||
"train_data = load_csv(train_fp)\n",
|
||
"valid_data = load_csv(valid_fp)\n",
|
||
"test_data = load_csv(test_fp)\n",
|
||
"relation_data = load_csv(relation_fp)\n",
|
||
"\n",
|
||
"for d in train_data:\n",
|
||
" d['tokens'] = eval(d['tokens'])\n",
|
||
"for d in valid_data:\n",
|
||
" d['tokens'] = eval(d['tokens'])\n",
|
||
"for d in test_data:\n",
|
||
" d['tokens'] = eval(d['tokens'])\n",
|
||
" \n",
|
||
"logger.info('convert relation into index...')\n",
|
||
"rels = _handle_relation_data(relation_data)\n",
|
||
"_add_relation_data(rels, train_data)\n",
|
||
"_add_relation_data(rels, valid_data)\n",
|
||
"_add_relation_data(rels, test_data)\n",
|
||
"\n",
|
||
"logger.info('verify whether use pretrained language models...')\n",
|
||
"\n",
|
||
"logger.info('use pretrained language models serialize sentence...')\n",
|
||
"_lm_serialize(train_data, cfg)\n",
|
||
"_lm_serialize(valid_data, cfg)\n",
|
||
"_lm_serialize(test_data, cfg)\n",
|
||
"\n",
|
||
"logger.info('save data for backup...')\n",
|
||
"os.makedirs(cfg.out_path, exist_ok=True)\n",
|
||
"train_save_fp = os.path.join(cfg.out_path, 'train.pkl')\n",
|
||
"valid_save_fp = os.path.join(cfg.out_path, 'valid.pkl')\n",
|
||
"test_save_fp = os.path.join(cfg.out_path, 'test.pkl')\n",
|
||
"save_pkl(train_data, train_save_fp)\n",
|
||
"save_pkl(valid_data, valid_save_fp)\n",
|
||
"save_pkl(test_data, test_save_fp)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# pytorch 构建自定义 Dataset\n",
|
||
"def collate_fn(cfg):\n",
|
||
" def collate_fn_intra(batch):\n",
|
||
" batch.sort(key=lambda data: int(data['lens']), reverse=True)\n",
|
||
" max_len = int(batch[0]['lens'])\n",
|
||
" \n",
|
||
" def _padding(x, max_len):\n",
|
||
" return x + [0] * (max_len - len(x))\n",
|
||
" \n",
|
||
" def _pad_adj(adj, max_len):\n",
|
||
" adj = np.array(adj)\n",
|
||
" pad_len = max_len - adj.shape[0]\n",
|
||
" for i in range(pad_len):\n",
|
||
" adj = np.insert(adj, adj.shape[-1], 0, axis=1)\n",
|
||
" for i in range(pad_len):\n",
|
||
" adj = np.insert(adj, adj.shape[0], 0, axis=0)\n",
|
||
" return adj\n",
|
||
" \n",
|
||
" x, y = dict(), []\n",
|
||
" word, word_len = [], []\n",
|
||
" head_pos, tail_pos = [], []\n",
|
||
" pcnn_mask = []\n",
|
||
" adj_matrix = []\n",
|
||
" for data in batch:\n",
|
||
" word.append(_padding(data['token2idx'], max_len))\n",
|
||
" word_len.append(int(data['lens']))\n",
|
||
" y.append(int(data['rel2idx']))\n",
|
||
" \n",
|
||
" if cfg.model_name != 'lm':\n",
|
||
" head_pos.append(_padding(data['head_pos'], max_len))\n",
|
||
" tail_pos.append(_padding(data['tail_pos'], max_len))\n",
|
||
" if cfg.model_name == 'gcn':\n",
|
||
" head = eval(data['dependency'])\n",
|
||
" adj = head_to_adj(head, directed=True, self_loop=True)\n",
|
||
" adj_matrix.append(_pad_adj(adj, max_len))\n",
|
||
"\n",
|
||
" if cfg.use_pcnn:\n",
|
||
" pcnn_mask.append(_padding(data['entities_pos'], max_len))\n",
|
||
"\n",
|
||
" x['word'] = torch.tensor(word)\n",
|
||
" x['lens'] = torch.tensor(word_len)\n",
|
||
" y = torch.tensor(y)\n",
|
||
" \n",
|
||
" if cfg.model_name != 'lm':\n",
|
||
" x['head_pos'] = torch.tensor(head_pos)\n",
|
||
" x['tail_pos'] = torch.tensor(tail_pos)\n",
|
||
" if cfg.model_name == 'gcn':\n",
|
||
" x['adj'] = torch.tensor(adj_matrix)\n",
|
||
" if cfg.model_name == 'cnn' and cfg.use_pcnn:\n",
|
||
" x['pcnn_mask'] = torch.tensor(pcnn_mask)\n",
|
||
"\n",
|
||
" return x, y\n",
|
||
" \n",
|
||
" return collate_fn_intra\n",
|
||
"\n",
|
||
"\n",
|
||
"class CustomDataset(Dataset):\n",
|
||
" \"\"\"默认使用 List 存储数据\"\"\"\n",
|
||
" def __init__(self, fp):\n",
|
||
" self.file = load_pkl(fp)\n",
|
||
"\n",
|
||
" def __getitem__(self, item):\n",
|
||
" sample = self.file[item]\n",
|
||
" return sample\n",
|
||
"\n",
|
||
" def __len__(self):\n",
|
||
" return len(self.file)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 预训练语言模型\n",
|
||
"class PretrainLM(nn.Module):\n",
|
||
" def __init__(self, cfg):\n",
|
||
" super(PretrainLM, self).__init__()\n",
|
||
" self.num_layers = cfg.rnn_layers\n",
|
||
" self.lm = BertModel.from_pretrained(cfg.lm_file, num_hidden_layers=cfg.lm_num_hidden_layers)\n",
|
||
" self.bilstm = nn.LSTM(768,10,batch_first=True,bidirectional=True,num_layers=cfg.rnn_layers,dropout=cfg.dropout)\n",
|
||
" self.fc = nn.Linear(20, cfg.num_relations)\n",
|
||
"\n",
|
||
" def forward(self, x):\n",
|
||
" N = self.num_layers\n",
|
||
" word, lens = x['word'], x['lens']\n",
|
||
" B = word.size(0)\n",
|
||
" output, pooler_output = self.lm(word)\n",
|
||
" output = pack_padded_sequence(output, lens, batch_first=True, enforce_sorted=True)\n",
|
||
" _, (output,_) = self.bilstm(output)\n",
|
||
" output = output.view(N, 2, B, 10).transpose(1, 2).contiguous().view(N, B, 20).transpose(0, 1)\n",
|
||
" output = output[:,-1,:]\n",
|
||
" output = self.fc(output)\n",
|
||
" \n",
|
||
" return output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# p,r,f1 指标测量\n",
|
||
"class PRMetric():\n",
|
||
" def __init__(self):\n",
|
||
" \"\"\"\n",
|
||
" 暂时调用 sklearn 的方法\n",
|
||
" \"\"\"\n",
|
||
" self.y_true = np.empty(0)\n",
|
||
" self.y_pred = np.empty(0)\n",
|
||
"\n",
|
||
" def reset(self):\n",
|
||
" self.y_true = np.empty(0)\n",
|
||
" self.y_pred = np.empty(0)\n",
|
||
"\n",
|
||
" def update(self, y_true:torch.Tensor, y_pred:torch.Tensor):\n",
|
||
" y_true = y_true.cpu().detach().numpy()\n",
|
||
" y_pred = y_pred.cpu().detach().numpy()\n",
|
||
" y_pred = np.argmax(y_pred,axis=-1)\n",
|
||
"\n",
|
||
" self.y_true = np.append(self.y_true, y_true)\n",
|
||
" self.y_pred = np.append(self.y_pred, y_pred)\n",
|
||
"\n",
|
||
" def compute(self):\n",
|
||
" p, r, f1, _ = precision_recall_fscore_support(self.y_true,self.y_pred,average='macro',warn_for=tuple())\n",
|
||
" _, _, acc, _ = precision_recall_fscore_support(self.y_true,self.y_pred,average='micro',warn_for=tuple())\n",
|
||
"\n",
|
||
" return acc,p,r,f1"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 训练过程中的迭代\n",
|
||
"def train(epoch, model, dataloader, optimizer, criterion, cfg):\n",
|
||
" model.train()\n",
|
||
"\n",
|
||
" metric = PRMetric()\n",
|
||
" losses = []\n",
|
||
"\n",
|
||
" for batch_idx, (x, y) in enumerate(dataloader, 1):\n",
|
||
" optimizer.zero_grad()\n",
|
||
" y_pred = model(x)\n",
|
||
" loss = criterion(y_pred, y)\n",
|
||
"\n",
|
||
" loss.backward()\n",
|
||
" optimizer.step()\n",
|
||
"\n",
|
||
" metric.update(y_true=y, y_pred=y_pred)\n",
|
||
" losses.append(loss.item())\n",
|
||
"\n",
|
||
" data_total = len(dataloader.dataset)\n",
|
||
" data_cal = data_total if batch_idx == len(dataloader) else batch_idx * len(y)\n",
|
||
" if (cfg.train_log and batch_idx % cfg.log_interval == 0) or batch_idx == len(dataloader):\n",
|
||
" # p r f1 皆为 macro,因为micro时三者相同,定义为acc\n",
|
||
" acc,p,r,f1 = metric.compute()\n",
|
||
" print(f'Train Epoch {epoch}: [{data_cal}/{data_total} ({100. * data_cal / data_total:.0f}%)]\\t'\n",
|
||
" f'Loss: {loss.item():.6f}')\n",
|
||
" print(f'Train Epoch {epoch}: Acc: {100. * acc:.2f}%\\t'\n",
|
||
" f'macro metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]')\n",
|
||
"\n",
|
||
" if cfg.show_plot and not cfg.only_comparison_plot:\n",
|
||
" if cfg.plot_utils == 'matplot':\n",
|
||
" plt.plot(losses)\n",
|
||
" plt.title(f'epoch {epoch} train loss')\n",
|
||
" plt.show()\n",
|
||
"\n",
|
||
" return losses[-1]\n",
|
||
"\n",
|
||
"\n",
|
||
"# 测试过程中的迭代\n",
|
||
"def validate(epoch, model, dataloader, criterion,verbose=True):\n",
|
||
" model.eval()\n",
|
||
"\n",
|
||
" metric = PRMetric()\n",
|
||
" losses = []\n",
|
||
"\n",
|
||
" for batch_idx, (x, y) in enumerate(dataloader, 1):\n",
|
||
" with torch.no_grad():\n",
|
||
" y_pred = model(x)\n",
|
||
" loss = criterion(y_pred, y)\n",
|
||
"\n",
|
||
" metric.update(y_true=y, y_pred=y_pred)\n",
|
||
" losses.append(loss.item())\n",
|
||
"\n",
|
||
" loss = sum(losses) / len(losses)\n",
|
||
" acc,p,r,f1 = metric.compute()\n",
|
||
" data_total = len(dataloader.dataset)\n",
|
||
" if verbose:\n",
|
||
" print(f'Valid Epoch {epoch}: [{data_total}/{data_total}](100%)\\t Loss: {loss:.6f}')\n",
|
||
" print(f'Valid Epoch {epoch}: Acc: {100. * acc:.2f}%\\tmacro metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]\\n\\n')\n",
|
||
"\n",
|
||
" return f1,loss"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 加载数据集\n",
|
||
"train_dataset = CustomDataset(train_save_fp)\n",
|
||
"valid_dataset = CustomDataset(valid_save_fp)\n",
|
||
"test_dataset = CustomDataset(test_save_fp)\n",
|
||
"\n",
|
||
"train_dataloader = DataLoader(train_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=collate_fn(cfg))\n",
|
||
"valid_dataloader = DataLoader(valid_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=collate_fn(cfg))\n",
|
||
"test_dataloader = DataLoader(test_dataset, batch_size=cfg.batch_size, shuffle=True, collate_fn=collate_fn(cfg))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# main 入口,定义优化函数、loss函数等\n",
|
||
"# 开始epoch迭代\n",
|
||
"# 使用valid 数据集的loss做早停判断,当不再下降时,此时为模型泛化性最好的时刻。\n",
|
||
"model = PretrainLM(cfg)\n",
|
||
"print(model)\n",
|
||
"\n",
|
||
"optimizer = optim.Adam(model.parameters(), lr=cfg.learning_rate, weight_decay=cfg.weight_decay)\n",
|
||
"scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=cfg.lr_factor, patience=cfg.lr_patience)\n",
|
||
"criterion = nn.CrossEntropyLoss()\n",
|
||
"\n",
|
||
"best_f1, best_epoch = -1, 0\n",
|
||
"es_loss, es_f1, es_epoch, es_patience, best_es_epoch, best_es_f1, = 1000, -1, 0, 0, 0, -1\n",
|
||
"train_losses, valid_losses = [], []\n",
|
||
"\n",
|
||
"logger.info('=' * 10 + ' Start training ' + '=' * 10)\n",
|
||
"for epoch in range(1, cfg.epoch + 1):\n",
|
||
" train_loss = train(epoch, model, train_dataloader, optimizer, criterion, cfg)\n",
|
||
" valid_f1, valid_loss = validate(epoch, model, valid_dataloader, criterion)\n",
|
||
" scheduler.step(valid_loss)\n",
|
||
"\n",
|
||
" train_losses.append(train_loss)\n",
|
||
" valid_losses.append(valid_loss)\n",
|
||
" if best_f1 < valid_f1:\n",
|
||
" best_f1 = valid_f1\n",
|
||
" best_epoch = epoch\n",
|
||
" # 使用 valid loss 做 early stopping 的判断标准\n",
|
||
" if es_loss > valid_loss:\n",
|
||
" es_loss = valid_loss\n",
|
||
" es_f1 = valid_f1\n",
|
||
" best_es_f1 = valid_f1\n",
|
||
" es_epoch = epoch\n",
|
||
" best_es_epoch = epoch\n",
|
||
" es_patience = 0\n",
|
||
" else:\n",
|
||
" es_patience += 1\n",
|
||
" if es_patience >= cfg.early_stopping_patience:\n",
|
||
" best_es_epoch = es_epoch\n",
|
||
" best_es_f1 = es_f1\n",
|
||
"\n",
|
||
"if cfg.show_plot:\n",
|
||
" if cfg.plot_utils == 'matplot':\n",
|
||
" plt.plot(train_losses, 'x-')\n",
|
||
" plt.plot(valid_losses, '+-')\n",
|
||
" plt.legend(['train', 'valid'])\n",
|
||
" plt.title('train/valid comparison loss')\n",
|
||
" plt.show()\n",
|
||
"\n",
|
||
"\n",
|
||
"print(f'best(valid loss quota) early stopping epoch: {best_es_epoch}, '\n",
|
||
" f'this epoch macro f1: {best_es_f1:0.4f}')\n",
|
||
"print(f'total {cfg.epoch} epochs, best(valid macro f1) epoch: {best_epoch}, '\n",
|
||
" f'this epoch macro f1: {best_f1:.4f}')\n",
|
||
"\n",
|
||
"test_f1, _ = validate(0, model, test_dataloader, criterion,verbose=False)\n",
|
||
"print(f'after {cfg.epoch} epochs, final test data macro f1: {test_f1:.4f}')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"本demo不包括调参部分,有兴趣的同学可以自行前往 [deepke](http://openkg.cn/tool/deepke) 仓库,下载使用更多的模型 :)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.7.3"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|