增加RSA加密解密工具类和相关jar

This commit is contained in:
zengfantian 2015-10-23 19:43:42 +08:00
parent d0abfd9294
commit 747853d1e8
2 changed files with 273 additions and 0 deletions

BIN
libs/bcprov-jdk16-1.46.jar Normal file

Binary file not shown.

View File

@ -0,0 +1,273 @@
package com.zftlive.android.library.tools.security;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import java.io.ByteArrayOutputStream;
import java.math.BigInteger;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.RSAPrivateKeySpec;
import java.security.spec.RSAPublicKeySpec;
import javax.crypto.Cipher;
/**
* RSA加密解密工具类<br>
* RSA加密速度比DES慢很多适合少量数据加密生成秘钥对需要引入开源加解密方案bouncycastle不能使用默认缺省的实现获取秘钥对Android
* Windows不同平台默认算法不一样DES/RSA都一样MD5都一样<br>
*
* 目前被破解的最长RSA密钥是768个二进制位RSA密钥一般是1024位重要场合则为2048位密钥长度越大加密越慢越安全也容易OOM RSA
* 工具类提供加密解密生成密钥对等方法 需要到http://www.bouncycastle.org下载bcprov-jdk14-123.jar
* RSA加密原理概述 RSA的安全性依赖于大数的分解公钥和私钥都是两个大素数大于100的十进制位的函数
* 据猜测从一个密钥和密文推断出明文的难度等同于分解两个大素数的积<br>
* ===================================================================<br>
* 该算法的安全性未得到理论的证明<br>
* =================================================================== <br>
* 密钥的产生<br>
* 1.选择两个大素数 p,q ,计算 n=p*q; <br>
* 2.随机选择加密密钥 e ,要求 e (p-1)*(q-1)互质 <br>
* 3.利用 Euclid算法计算解密密钥 d , 使其满足 e*d = 1(mod(p-1)*(q-1)) (其中 n,d 也要互质) <br>
* 4:至此得出公钥为 (n,e)私钥为(n,d) <br>
* ===================================================================<br>
* 加解密方法<br>
* 1.首先将要加密的信息 m(二进制表示) 分成等长的数据块 m1,m <br>
* 2,...,mi 块长 s(尽可能大) ,其中2^s<n2:对应的密文是 ci = mi^e(mod n) <br>
* 3:解密时作如下计算 mi = ci^d(mod n)<br>
* =================================================================== <br>
* RSA速度
* 由于进行的都是大数计算使得RSA最快的情况也比DES慢上100倍无论 是软件还是硬件实现 速度一直是RSA的缺陷一般来说只用于少量数据 加密 <br>
* 参考文献<br>
* http://repo1.maven.org/maven2/org/bouncycastle/
* http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html<br>
* http://blog.csdn.net/yanzi1225627/article/details/26508035<br>
* http://blog.csdn.net/bbld_/article/details/38777491<br>
*
* @author 曾繁添
* @version 1.0
*/
public class RSA {
/**
* 生成密钥对公钥和私钥
*
* @param mKeySize 密钥长度,默认1024
* @return KeyPair 密钥对包含公钥和私钥
* @throws Exception 生成秘钥对异常
*/
public static KeyPair genKeyPair(int mKeySize) throws Exception {
KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA", new BouncyCastleProvider());
kpg.initialize(mKeySize, new SecureRandom());
return kpg.genKeyPair();
}
public void testRSA() {
try {
String str = "yanzi1225627";
RSAPublicKey pubKey = getRSAPublicKey();
RSAPrivateKey priKey = getRSAPrivateKey();
byte[] enRsaBytes = encrypt(pubKey, str.getBytes());
String enRsaStr = new String(enRsaBytes, "UTF-8");
System.out.println("加密后==" + enRsaStr);
System.out.println("解密后=="+ new String(decrypt(priKey, encrypt(pubKey, str.getBytes()))));
} catch (Exception e) {
e.printStackTrace();
}
}
// 密钥对
private KeyPair keyPair = null;
/**
* 初始化密钥对
*/
public void init() {
try {
this.keyPair = this.generateKeyPair();
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 生成密钥对
*
* @return KeyPair
* @throws Exception
*/
private KeyPair generateKeyPair() throws Exception {
try {
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA",
new BouncyCastleProvider());
// 这个值关系到块加密的大小可以更改但是不要太大否则效率会低
final int KEY_SIZE = 1024;
keyPairGen.initialize(KEY_SIZE, new SecureRandom());
KeyPair keyPair = keyPairGen.genKeyPair();
return keyPair;
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}
/**
* 生成公钥
*
* @param modulus
* @param publicExponent
* @return RSAPublicKey
* @throws Exception
*/
private RSAPublicKey generateRSAPublicKey(byte[] modulus, byte[] publicExponent)
throws Exception {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(new BigInteger(modulus), new BigInteger(
publicExponent));
try {
return (RSAPublicKey) keyFac.generatePublic(pubKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}
}
/**
* 生成私钥
*
* @param modulus
* @param privateExponent
* @return RSAPrivateKey
* @throws Exception
*/
private RSAPrivateKey generateRSAPrivateKey(byte[] modulus, byte[] privateExponent)
throws Exception {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(new BigInteger(modulus),
new BigInteger(privateExponent));
try {
return (RSAPrivateKey) keyFac.generatePrivate(priKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}
}
/**
* 返回公钥
*
* @return
* @throws Exception
*/
public RSAPublicKey getRSAPublicKey() throws Exception {
// 获取公钥
RSAPublicKey pubKey = (RSAPublicKey) keyPair.getPublic();
// 获取公钥系数(字节数组形式)
byte[] pubModBytes = pubKey.getModulus().toByteArray();
// 返回公钥公用指数(字节数组形式)
byte[] pubPubExpBytes = pubKey.getPublicExponent().toByteArray();
// 生成公钥
RSAPublicKey recoveryPubKey = this.generateRSAPublicKey(pubModBytes, pubPubExpBytes);
return recoveryPubKey;
}
/**
* 获取私钥
*
* @return
* @throws Exception
*/
public RSAPrivateKey getRSAPrivateKey() throws Exception {
// 获取私钥
RSAPrivateKey priKey = (RSAPrivateKey) keyPair.getPrivate();
// 返回私钥系数(字节数组形式)
byte[] priModBytes = priKey.getModulus().toByteArray();
// 返回私钥专用指数(字节数组形式)
byte[] priPriExpBytes = priKey.getPrivateExponent().toByteArray();
// 生成私钥
RSAPrivateKey recoveryPriKey = this.generateRSAPrivateKey(priModBytes, priPriExpBytes);
return recoveryPriKey;
}
/**
* 加密
*
* @param key 加密的密钥
* @param data 待加密的明文数据
* @return 加密后的数据
* @throws Exception
*/
public byte[] encrypt(Key key, byte[] data) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new BouncyCastleProvider());
cipher.init(Cipher.ENCRYPT_MODE, key);
// 获得加密块大小:加密前数据为128个byte而key_size=1024 加密块大小为127
// byte,加密后为128个byte;
// 因此共有2个加密块第一个127 byte第二个为1个byte
int blockSize = cipher.getBlockSize();
int outputSize = cipher.getOutputSize(data.length);// 获得加密块加密后块大小
int leavedSize = data.length % blockSize;
int blocksSize = leavedSize != 0 ? data.length / blockSize + 1 : data.length
/ blockSize;
byte[] raw = new byte[outputSize * blocksSize];
int i = 0;
while (data.length - i * blockSize > 0) {
if (data.length - i * blockSize > blockSize)
cipher.doFinal(data, i * blockSize, blockSize, raw, i * outputSize);
else
cipher.doFinal(data, i * blockSize, data.length - i * blockSize, raw, i
* outputSize);
// 这里面doUpdate方法不可用查看源代码后发现每次doUpdate后并没有什么实际动作除了把byte[]放到ByteArrayOutputStream中
// 而最后doFinal的时候才将所有的byte[]进行加密可是到了此时加密块大小很可能已经超出了OutputSize所以只好用dofinal方法
i++;
}
return raw;
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}
/**
* 解密
*
* @param key 解密的密钥
* @param raw 已经加密的数据
* @return 解密后的明文
* @throws Exception
*/
public byte[] decrypt(Key key, byte[] raw) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new BouncyCastleProvider());
cipher.init(cipher.DECRYPT_MODE, key);
int blockSize = cipher.getBlockSize();
ByteArrayOutputStream bout = new ByteArrayOutputStream(64);
int j = 0;
while (raw.length - j * blockSize > 0) {
bout.write(cipher.doFinal(raw, j * blockSize, blockSize));
j++;
}
return bout.toByteArray();
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}
}