QemuK210/hw/usb/hcd-ehci.c

2599 lines
73 KiB
C

/*
* QEMU USB EHCI Emulation
*
* Copyright(c) 2008 Emutex Ltd. (address@hidden)
* Copyright(c) 2011-2012 Red Hat, Inc.
*
* Red Hat Authors:
* Gerd Hoffmann <kraxel@redhat.com>
* Hans de Goede <hdegoede@redhat.com>
*
* EHCI project was started by Mark Burkley, with contributions by
* Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
* Jan Kiszka and Vincent Palatin contributed bugfixes.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/usb/ehci-regs.h"
#include "hw/usb/hcd-ehci.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "sysemu/runstate.h"
#define FRAME_TIMER_FREQ 1000
#define FRAME_TIMER_NS (NANOSECONDS_PER_SECOND / FRAME_TIMER_FREQ)
#define UFRAME_TIMER_NS (FRAME_TIMER_NS / 8)
#define NB_MAXINTRATE 8 // Max rate at which controller issues ints
#define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
#define MAX_QH 100 // Max allowable queue heads in a chain
#define MIN_UFR_PER_TICK 24 /* Min frames to process when catching up */
#define PERIODIC_ACTIVE 512 /* Micro-frames */
/* Internal periodic / asynchronous schedule state machine states
*/
typedef enum {
EST_INACTIVE = 1000,
EST_ACTIVE,
EST_EXECUTING,
EST_SLEEPING,
/* The following states are internal to the state machine function
*/
EST_WAITLISTHEAD,
EST_FETCHENTRY,
EST_FETCHQH,
EST_FETCHITD,
EST_FETCHSITD,
EST_ADVANCEQUEUE,
EST_FETCHQTD,
EST_EXECUTE,
EST_WRITEBACK,
EST_HORIZONTALQH
} EHCI_STATES;
/* macros for accessing fields within next link pointer entry */
#define NLPTR_GET(x) ((x) & 0xffffffe0)
#define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
#define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
/* link pointer types */
#define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
#define NLPTR_TYPE_QH 1 // queue head
#define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
#define NLPTR_TYPE_FSTN 3 // frame span traversal node
#define SET_LAST_RUN_CLOCK(s) \
(s)->last_run_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* nifty macros from Arnon's EHCI version */
#define get_field(data, field) \
(((data) & field##_MASK) >> field##_SH)
#define set_field(data, newval, field) do { \
uint32_t val = *data; \
val &= ~ field##_MASK; \
val |= ((newval) << field##_SH) & field##_MASK; \
*data = val; \
} while(0)
static const char *ehci_state_names[] = {
[EST_INACTIVE] = "INACTIVE",
[EST_ACTIVE] = "ACTIVE",
[EST_EXECUTING] = "EXECUTING",
[EST_SLEEPING] = "SLEEPING",
[EST_WAITLISTHEAD] = "WAITLISTHEAD",
[EST_FETCHENTRY] = "FETCH ENTRY",
[EST_FETCHQH] = "FETCH QH",
[EST_FETCHITD] = "FETCH ITD",
[EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
[EST_FETCHQTD] = "FETCH QTD",
[EST_EXECUTE] = "EXECUTE",
[EST_WRITEBACK] = "WRITEBACK",
[EST_HORIZONTALQH] = "HORIZONTALQH",
};
static const char *ehci_mmio_names[] = {
[USBCMD] = "USBCMD",
[USBSTS] = "USBSTS",
[USBINTR] = "USBINTR",
[FRINDEX] = "FRINDEX",
[PERIODICLISTBASE] = "P-LIST BASE",
[ASYNCLISTADDR] = "A-LIST ADDR",
[CONFIGFLAG] = "CONFIGFLAG",
};
static int ehci_state_executing(EHCIQueue *q);
static int ehci_state_writeback(EHCIQueue *q);
static int ehci_state_advqueue(EHCIQueue *q);
static int ehci_fill_queue(EHCIPacket *p);
static void ehci_free_packet(EHCIPacket *p);
static const char *nr2str(const char **n, size_t len, uint32_t nr)
{
if (nr < len && n[nr] != NULL) {
return n[nr];
} else {
return "unknown";
}
}
static const char *state2str(uint32_t state)
{
return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
}
static const char *addr2str(hwaddr addr)
{
return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
}
static void ehci_trace_usbsts(uint32_t mask, int state)
{
/* interrupts */
if (mask & USBSTS_INT) {
trace_usb_ehci_usbsts("INT", state);
}
if (mask & USBSTS_ERRINT) {
trace_usb_ehci_usbsts("ERRINT", state);
}
if (mask & USBSTS_PCD) {
trace_usb_ehci_usbsts("PCD", state);
}
if (mask & USBSTS_FLR) {
trace_usb_ehci_usbsts("FLR", state);
}
if (mask & USBSTS_HSE) {
trace_usb_ehci_usbsts("HSE", state);
}
if (mask & USBSTS_IAA) {
trace_usb_ehci_usbsts("IAA", state);
}
/* status */
if (mask & USBSTS_HALT) {
trace_usb_ehci_usbsts("HALT", state);
}
if (mask & USBSTS_REC) {
trace_usb_ehci_usbsts("REC", state);
}
if (mask & USBSTS_PSS) {
trace_usb_ehci_usbsts("PSS", state);
}
if (mask & USBSTS_ASS) {
trace_usb_ehci_usbsts("ASS", state);
}
}
static inline void ehci_set_usbsts(EHCIState *s, int mask)
{
if ((s->usbsts & mask) == mask) {
return;
}
ehci_trace_usbsts(mask, 1);
s->usbsts |= mask;
}
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
{
if ((s->usbsts & mask) == 0) {
return;
}
ehci_trace_usbsts(mask, 0);
s->usbsts &= ~mask;
}
/* update irq line */
static inline void ehci_update_irq(EHCIState *s)
{
int level = 0;
if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
level = 1;
}
trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr);
qemu_set_irq(s->irq, level);
}
/* flag interrupt condition */
static inline void ehci_raise_irq(EHCIState *s, int intr)
{
if (intr & (USBSTS_PCD | USBSTS_FLR | USBSTS_HSE)) {
s->usbsts |= intr;
ehci_update_irq(s);
} else {
s->usbsts_pending |= intr;
}
}
/*
* Commit pending interrupts (added via ehci_raise_irq),
* at the rate allowed by "Interrupt Threshold Control".
*/
static inline void ehci_commit_irq(EHCIState *s)
{
uint32_t itc;
if (!s->usbsts_pending) {
return;
}
if (s->usbsts_frindex > s->frindex) {
return;
}
itc = (s->usbcmd >> 16) & 0xff;
s->usbsts |= s->usbsts_pending;
s->usbsts_pending = 0;
s->usbsts_frindex = s->frindex + itc;
ehci_update_irq(s);
}
static void ehci_update_halt(EHCIState *s)
{
if (s->usbcmd & USBCMD_RUNSTOP) {
ehci_clear_usbsts(s, USBSTS_HALT);
} else {
if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
ehci_set_usbsts(s, USBSTS_HALT);
}
}
}
static void ehci_set_state(EHCIState *s, int async, int state)
{
if (async) {
trace_usb_ehci_state("async", state2str(state));
s->astate = state;
if (s->astate == EST_INACTIVE) {
ehci_clear_usbsts(s, USBSTS_ASS);
ehci_update_halt(s);
} else {
ehci_set_usbsts(s, USBSTS_ASS);
}
} else {
trace_usb_ehci_state("periodic", state2str(state));
s->pstate = state;
if (s->pstate == EST_INACTIVE) {
ehci_clear_usbsts(s, USBSTS_PSS);
ehci_update_halt(s);
} else {
ehci_set_usbsts(s, USBSTS_PSS);
}
}
}
static int ehci_get_state(EHCIState *s, int async)
{
return async ? s->astate : s->pstate;
}
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
{
if (async) {
s->a_fetch_addr = addr;
} else {
s->p_fetch_addr = addr;
}
}
static int ehci_get_fetch_addr(EHCIState *s, int async)
{
return async ? s->a_fetch_addr : s->p_fetch_addr;
}
static void ehci_trace_qh(EHCIQueue *q, hwaddr addr, EHCIqh *qh)
{
/* need three here due to argument count limits */
trace_usb_ehci_qh_ptrs(q, addr, qh->next,
qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
trace_usb_ehci_qh_fields(addr,
get_field(qh->epchar, QH_EPCHAR_RL),
get_field(qh->epchar, QH_EPCHAR_MPLEN),
get_field(qh->epchar, QH_EPCHAR_EPS),
get_field(qh->epchar, QH_EPCHAR_EP),
get_field(qh->epchar, QH_EPCHAR_DEVADDR));
trace_usb_ehci_qh_bits(addr,
(bool)(qh->epchar & QH_EPCHAR_C),
(bool)(qh->epchar & QH_EPCHAR_H),
(bool)(qh->epchar & QH_EPCHAR_DTC),
(bool)(qh->epchar & QH_EPCHAR_I));
}
static void ehci_trace_qtd(EHCIQueue *q, hwaddr addr, EHCIqtd *qtd)
{
/* need three here due to argument count limits */
trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
trace_usb_ehci_qtd_fields(addr,
get_field(qtd->token, QTD_TOKEN_TBYTES),
get_field(qtd->token, QTD_TOKEN_CPAGE),
get_field(qtd->token, QTD_TOKEN_CERR),
get_field(qtd->token, QTD_TOKEN_PID));
trace_usb_ehci_qtd_bits(addr,
(bool)(qtd->token & QTD_TOKEN_IOC),
(bool)(qtd->token & QTD_TOKEN_ACTIVE),
(bool)(qtd->token & QTD_TOKEN_HALT),
(bool)(qtd->token & QTD_TOKEN_BABBLE),
(bool)(qtd->token & QTD_TOKEN_XACTERR));
}
static void ehci_trace_itd(EHCIState *s, hwaddr addr, EHCIitd *itd)
{
trace_usb_ehci_itd(addr, itd->next,
get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
get_field(itd->bufptr[0], ITD_BUFPTR_EP),
get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
}
static void ehci_trace_sitd(EHCIState *s, hwaddr addr,
EHCIsitd *sitd)
{
trace_usb_ehci_sitd(addr, sitd->next,
(bool)(sitd->results & SITD_RESULTS_ACTIVE));
}
static void ehci_trace_guest_bug(EHCIState *s, const char *message)
{
trace_usb_ehci_guest_bug(message);
}
static inline bool ehci_enabled(EHCIState *s)
{
return s->usbcmd & USBCMD_RUNSTOP;
}
static inline bool ehci_async_enabled(EHCIState *s)
{
return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
}
static inline bool ehci_periodic_enabled(EHCIState *s)
{
return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
}
/* Get an array of dwords from main memory */
static inline int get_dwords(EHCIState *ehci, uint32_t addr,
uint32_t *buf, int num)
{
int i;
if (!ehci->as) {
ehci_raise_irq(ehci, USBSTS_HSE);
ehci->usbcmd &= ~USBCMD_RUNSTOP;
trace_usb_ehci_dma_error();
return -1;
}
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
dma_memory_read(ehci->as, addr, buf, sizeof(*buf));
*buf = le32_to_cpu(*buf);
}
return num;
}
/* Put an array of dwords in to main memory */
static inline int put_dwords(EHCIState *ehci, uint32_t addr,
uint32_t *buf, int num)
{
int i;
if (!ehci->as) {
ehci_raise_irq(ehci, USBSTS_HSE);
ehci->usbcmd &= ~USBCMD_RUNSTOP;
trace_usb_ehci_dma_error();
return -1;
}
for (i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
uint32_t tmp = cpu_to_le32(*buf);
dma_memory_write(ehci->as, addr, &tmp, sizeof(tmp));
}
return num;
}
static int ehci_get_pid(EHCIqtd *qtd)
{
switch (get_field(qtd->token, QTD_TOKEN_PID)) {
case 0:
return USB_TOKEN_OUT;
case 1:
return USB_TOKEN_IN;
case 2:
return USB_TOKEN_SETUP;
default:
fprintf(stderr, "bad token\n");
return 0;
}
}
static bool ehci_verify_qh(EHCIQueue *q, EHCIqh *qh)
{
uint32_t devaddr = get_field(qh->epchar, QH_EPCHAR_DEVADDR);
uint32_t endp = get_field(qh->epchar, QH_EPCHAR_EP);
if ((devaddr != get_field(q->qh.epchar, QH_EPCHAR_DEVADDR)) ||
(endp != get_field(q->qh.epchar, QH_EPCHAR_EP)) ||
(qh->current_qtd != q->qh.current_qtd) ||
(q->async && qh->next_qtd != q->qh.next_qtd) ||
(memcmp(&qh->altnext_qtd, &q->qh.altnext_qtd,
7 * sizeof(uint32_t)) != 0) ||
(q->dev != NULL && q->dev->addr != devaddr)) {
return false;
} else {
return true;
}
}
static bool ehci_verify_qtd(EHCIPacket *p, EHCIqtd *qtd)
{
if (p->qtdaddr != p->queue->qtdaddr ||
(p->queue->async && !NLPTR_TBIT(p->qtd.next) &&
(p->qtd.next != qtd->next)) ||
(!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd->altnext)) ||
p->qtd.token != qtd->token ||
p->qtd.bufptr[0] != qtd->bufptr[0]) {
return false;
} else {
return true;
}
}
static bool ehci_verify_pid(EHCIQueue *q, EHCIqtd *qtd)
{
int ep = get_field(q->qh.epchar, QH_EPCHAR_EP);
int pid = ehci_get_pid(qtd);
/* Note the pid changing is normal for ep 0 (the control ep) */
if (q->last_pid && ep != 0 && pid != q->last_pid) {
return false;
} else {
return true;
}
}
/* Finish executing and writeback a packet outside of the regular
fetchqh -> fetchqtd -> execute -> writeback cycle */
static void ehci_writeback_async_complete_packet(EHCIPacket *p)
{
EHCIQueue *q = p->queue;
EHCIqtd qtd;
EHCIqh qh;
int state;
/* Verify the qh + qtd, like we do when going through fetchqh & fetchqtd */
get_dwords(q->ehci, NLPTR_GET(q->qhaddr),
(uint32_t *) &qh, sizeof(EHCIqh) >> 2);
get_dwords(q->ehci, NLPTR_GET(q->qtdaddr),
(uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
if (!ehci_verify_qh(q, &qh) || !ehci_verify_qtd(p, &qtd)) {
p->async = EHCI_ASYNC_INITIALIZED;
ehci_free_packet(p);
return;
}
state = ehci_get_state(q->ehci, q->async);
ehci_state_executing(q);
ehci_state_writeback(q); /* Frees the packet! */
if (!(q->qh.token & QTD_TOKEN_HALT)) {
ehci_state_advqueue(q);
}
ehci_set_state(q->ehci, q->async, state);
}
/* packet management */
static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
{
EHCIPacket *p;
p = g_new0(EHCIPacket, 1);
p->queue = q;
usb_packet_init(&p->packet);
QTAILQ_INSERT_TAIL(&q->packets, p, next);
trace_usb_ehci_packet_action(p->queue, p, "alloc");
return p;
}
static void ehci_free_packet(EHCIPacket *p)
{
if (p->async == EHCI_ASYNC_FINISHED &&
!(p->queue->qh.token & QTD_TOKEN_HALT)) {
ehci_writeback_async_complete_packet(p);
return;
}
trace_usb_ehci_packet_action(p->queue, p, "free");
if (p->async == EHCI_ASYNC_INFLIGHT) {
usb_cancel_packet(&p->packet);
}
if (p->async == EHCI_ASYNC_FINISHED &&
p->packet.status == USB_RET_SUCCESS) {
fprintf(stderr,
"EHCI: Dropping completed packet from halted %s ep %02X\n",
(p->pid == USB_TOKEN_IN) ? "in" : "out",
get_field(p->queue->qh.epchar, QH_EPCHAR_EP));
}
if (p->async != EHCI_ASYNC_NONE) {
usb_packet_unmap(&p->packet, &p->sgl);
qemu_sglist_destroy(&p->sgl);
}
QTAILQ_REMOVE(&p->queue->packets, p, next);
usb_packet_cleanup(&p->packet);
g_free(p);
}
/* queue management */
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q;
q = g_malloc0(sizeof(*q));
q->ehci = ehci;
q->qhaddr = addr;
q->async = async;
QTAILQ_INIT(&q->packets);
QTAILQ_INSERT_HEAD(head, q, next);
trace_usb_ehci_queue_action(q, "alloc");
return q;
}
static void ehci_queue_stopped(EHCIQueue *q)
{
int endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
if (!q->last_pid || !q->dev) {
return;
}
usb_device_ep_stopped(q->dev, usb_ep_get(q->dev, q->last_pid, endp));
}
static int ehci_cancel_queue(EHCIQueue *q)
{
EHCIPacket *p;
int packets = 0;
p = QTAILQ_FIRST(&q->packets);
if (p == NULL) {
goto leave;
}
trace_usb_ehci_queue_action(q, "cancel");
do {
ehci_free_packet(p);
packets++;
} while ((p = QTAILQ_FIRST(&q->packets)) != NULL);
leave:
ehci_queue_stopped(q);
return packets;
}
static int ehci_reset_queue(EHCIQueue *q)
{
int packets;
trace_usb_ehci_queue_action(q, "reset");
packets = ehci_cancel_queue(q);
q->dev = NULL;
q->qtdaddr = 0;
q->last_pid = 0;
return packets;
}
static void ehci_free_queue(EHCIQueue *q, const char *warn)
{
EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
int cancelled;
trace_usb_ehci_queue_action(q, "free");
cancelled = ehci_cancel_queue(q);
if (warn && cancelled > 0) {
ehci_trace_guest_bug(q->ehci, warn);
}
QTAILQ_REMOVE(head, q, next);
g_free(q);
}
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q;
QTAILQ_FOREACH(q, head, next) {
if (addr == q->qhaddr) {
return q;
}
}
return NULL;
}
static void ehci_queues_rip_unused(EHCIState *ehci, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
const char *warn = async ? "guest unlinked busy QH" : NULL;
uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
if (q->seen) {
q->seen = 0;
q->ts = ehci->last_run_ns;
continue;
}
if (ehci->last_run_ns < q->ts + maxage) {
continue;
}
ehci_free_queue(q, warn);
}
}
static void ehci_queues_rip_unseen(EHCIState *ehci, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
if (!q->seen) {
ehci_free_queue(q, NULL);
}
}
}
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
if (q->dev != dev) {
continue;
}
ehci_free_queue(q, NULL);
}
}
static void ehci_queues_rip_all(EHCIState *ehci, int async)
{
EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
const char *warn = async ? "guest stopped busy async schedule" : NULL;
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
ehci_free_queue(q, warn);
}
}
/* Attach or detach a device on root hub */
static void ehci_attach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->dev = port->dev;
companion->ops->attach(companion);
return;
}
*portsc |= PORTSC_CONNECT;
*portsc |= PORTSC_CSC;
ehci_raise_irq(s, USBSTS_PCD);
}
static void ehci_detach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
trace_usb_ehci_port_detach(port->index, owner);
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->detach(companion);
companion->dev = NULL;
/*
* EHCI spec 4.2.2: "When a disconnect occurs... On the event,
* the port ownership is returned immediately to the EHCI controller."
*/
*portsc &= ~PORTSC_POWNER;
return;
}
ehci_queues_rip_device(s, port->dev, 0);
ehci_queues_rip_device(s, port->dev, 1);
*portsc &= ~(PORTSC_CONNECT|PORTSC_PED|PORTSC_SUSPEND);
*portsc |= PORTSC_CSC;
ehci_raise_irq(s, USBSTS_PCD);
}
static void ehci_child_detach(USBPort *port, USBDevice *child)
{
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
if (portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->child_detach(companion, child);
return;
}
ehci_queues_rip_device(s, child, 0);
ehci_queues_rip_device(s, child, 1);
}
static void ehci_wakeup(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
if (companion->ops->wakeup) {
companion->ops->wakeup(companion);
}
return;
}
if (*portsc & PORTSC_SUSPEND) {
trace_usb_ehci_port_wakeup(port->index);
*portsc |= PORTSC_FPRES;
ehci_raise_irq(s, USBSTS_PCD);
}
qemu_bh_schedule(s->async_bh);
}
static void ehci_register_companion(USBBus *bus, USBPort *ports[],
uint32_t portcount, uint32_t firstport,
Error **errp)
{
EHCIState *s = container_of(bus, EHCIState, bus);
uint32_t i;
if (firstport + portcount > NB_PORTS) {
error_setg(errp, "firstport must be between 0 and %u",
NB_PORTS - portcount);
return;
}
for (i = 0; i < portcount; i++) {
if (s->companion_ports[firstport + i]) {
error_setg(errp, "firstport %u asks for ports %u-%u,"
" but port %u has a companion assigned already",
firstport, firstport, firstport + portcount - 1,
firstport + i);
return;
}
}
for (i = 0; i < portcount; i++) {
s->companion_ports[firstport + i] = ports[i];
s->ports[firstport + i].speedmask |=
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
/* Ensure devs attached before the initial reset go to the companion */
s->portsc[firstport + i] = PORTSC_POWNER;
}
s->companion_count++;
s->caps[0x05] = (s->companion_count << 4) | portcount;
}
static void ehci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep,
unsigned int stream)
{
EHCIState *s = container_of(bus, EHCIState, bus);
uint32_t portsc = s->portsc[ep->dev->port->index];
if (portsc & PORTSC_POWNER) {
return;
}
s->periodic_sched_active = PERIODIC_ACTIVE;
qemu_bh_schedule(s->async_bh);
}
static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
{
USBDevice *dev;
USBPort *port;
int i;
for (i = 0; i < NB_PORTS; i++) {
port = &ehci->ports[i];
if (!(ehci->portsc[i] & PORTSC_PED)) {
DPRINTF("Port %d not enabled\n", i);
continue;
}
dev = usb_find_device(port, addr);
if (dev != NULL) {
return dev;
}
}
return NULL;
}
/* 4.1 host controller initialization */
void ehci_reset(void *opaque)
{
EHCIState *s = opaque;
int i;
USBDevice *devs[NB_PORTS];
trace_usb_ehci_reset();
/*
* Do the detach before touching portsc, so that it correctly gets send to
* us or to our companion based on PORTSC_POWNER before the reset.
*/
for(i = 0; i < NB_PORTS; i++) {
devs[i] = s->ports[i].dev;
if (devs[i] && devs[i]->attached) {
usb_detach(&s->ports[i]);
}
}
memset(&s->opreg, 0x00, sizeof(s->opreg));
memset(&s->portsc, 0x00, sizeof(s->portsc));
s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
s->usbsts = USBSTS_HALT;
s->usbsts_pending = 0;
s->usbsts_frindex = 0;
ehci_update_irq(s);
s->astate = EST_INACTIVE;
s->pstate = EST_INACTIVE;
for(i = 0; i < NB_PORTS; i++) {
if (s->companion_ports[i]) {
s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
} else {
s->portsc[i] = PORTSC_PPOWER;
}
if (devs[i] && devs[i]->attached) {
usb_attach(&s->ports[i]);
usb_device_reset(devs[i]);
}
}
ehci_queues_rip_all(s, 0);
ehci_queues_rip_all(s, 1);
timer_del(s->frame_timer);
qemu_bh_cancel(s->async_bh);
}
static uint64_t ehci_caps_read(void *ptr, hwaddr addr,
unsigned size)
{
EHCIState *s = ptr;
return s->caps[addr];
}
static void ehci_caps_write(void *ptr, hwaddr addr,
uint64_t val, unsigned size)
{
}
static uint64_t ehci_opreg_read(void *ptr, hwaddr addr,
unsigned size)
{
EHCIState *s = ptr;
uint32_t val;
switch (addr) {
case FRINDEX:
/* Round down to mult of 8, else it can go backwards on migration */
val = s->frindex & ~7;
break;
default:
val = s->opreg[addr >> 2];
}
trace_usb_ehci_opreg_read(addr + s->opregbase, addr2str(addr), val);
return val;
}
static uint64_t ehci_port_read(void *ptr, hwaddr addr,
unsigned size)
{
EHCIState *s = ptr;
uint32_t val;
val = s->portsc[addr >> 2];
trace_usb_ehci_portsc_read(addr + s->portscbase, addr >> 2, val);
return val;
}
static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
{
USBDevice *dev = s->ports[port].dev;
uint32_t *portsc = &s->portsc[port];
uint32_t orig;
if (s->companion_ports[port] == NULL)
return;
owner = owner & PORTSC_POWNER;
orig = *portsc & PORTSC_POWNER;
if (!(owner ^ orig)) {
return;
}
if (dev && dev->attached) {
usb_detach(&s->ports[port]);
}
*portsc &= ~PORTSC_POWNER;
*portsc |= owner;
if (dev && dev->attached) {
usb_attach(&s->ports[port]);
}
}
static void ehci_port_write(void *ptr, hwaddr addr,
uint64_t val, unsigned size)
{
EHCIState *s = ptr;
int port = addr >> 2;
uint32_t *portsc = &s->portsc[port];
uint32_t old = *portsc;
USBDevice *dev = s->ports[port].dev;
trace_usb_ehci_portsc_write(addr + s->portscbase, addr >> 2, val);
/* Clear rwc bits */
*portsc &= ~(val & PORTSC_RWC_MASK);
/* The guest may clear, but not set the PED bit */
*portsc &= val | ~PORTSC_PED;
/* POWNER is masked out by RO_MASK as it is RO when we've no companion */
handle_port_owner_write(s, port, val);
/* And finally apply RO_MASK */
val &= PORTSC_RO_MASK;
if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
trace_usb_ehci_port_reset(port, 1);
}
if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
trace_usb_ehci_port_reset(port, 0);
if (dev && dev->attached) {
usb_port_reset(&s->ports[port]);
*portsc &= ~PORTSC_CSC;
}
/*
* Table 2.16 Set the enable bit(and enable bit change) to indicate
* to SW that this port has a high speed device attached
*/
if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
val |= PORTSC_PED;
}
}
if ((val & PORTSC_SUSPEND) && !(*portsc & PORTSC_SUSPEND)) {
trace_usb_ehci_port_suspend(port);
}
if (!(val & PORTSC_FPRES) && (*portsc & PORTSC_FPRES)) {
trace_usb_ehci_port_resume(port);
val &= ~PORTSC_SUSPEND;
}
*portsc &= ~PORTSC_RO_MASK;
*portsc |= val;
trace_usb_ehci_portsc_change(addr + s->portscbase, addr >> 2, *portsc, old);
}
static void ehci_opreg_write(void *ptr, hwaddr addr,
uint64_t val, unsigned size)
{
EHCIState *s = ptr;
uint32_t *mmio = s->opreg + (addr >> 2);
uint32_t old = *mmio;
int i;
trace_usb_ehci_opreg_write(addr + s->opregbase, addr2str(addr), val);
switch (addr) {
case USBCMD:
if (val & USBCMD_HCRESET) {
ehci_reset(s);
val = s->usbcmd;
break;
}
/* not supporting dynamic frame list size at the moment */
if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
fprintf(stderr, "attempt to set frame list size -- value %d\n",
(int)val & USBCMD_FLS);
val &= ~USBCMD_FLS;
}
if (val & USBCMD_IAAD) {
/*
* Process IAAD immediately, otherwise the Linux IAAD watchdog may
* trigger and re-use a qh without us seeing the unlink.
*/
s->async_stepdown = 0;
qemu_bh_schedule(s->async_bh);
trace_usb_ehci_doorbell_ring();
}
if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) !=
((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) {
if (s->pstate == EST_INACTIVE) {
SET_LAST_RUN_CLOCK(s);
}
s->usbcmd = val; /* Set usbcmd for ehci_update_halt() */
ehci_update_halt(s);
s->async_stepdown = 0;
qemu_bh_schedule(s->async_bh);
}
break;
case USBSTS:
val &= USBSTS_RO_MASK; // bits 6 through 31 are RO
ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC
val = s->usbsts;
ehci_update_irq(s);
break;
case USBINTR:
val &= USBINTR_MASK;
if (ehci_enabled(s) && (USBSTS_FLR & val)) {
qemu_bh_schedule(s->async_bh);
}
break;
case FRINDEX:
val &= 0x00003fff; /* frindex is 14bits */
s->usbsts_frindex = val;
break;
case CONFIGFLAG:
val &= 0x1;
if (val) {
for(i = 0; i < NB_PORTS; i++)
handle_port_owner_write(s, i, 0);
}
break;
case PERIODICLISTBASE:
if (ehci_periodic_enabled(s)) {
fprintf(stderr,
"ehci: PERIODIC list base register set while periodic schedule\n"
" is enabled and HC is enabled\n");
}
break;
case ASYNCLISTADDR:
if (ehci_async_enabled(s)) {
fprintf(stderr,
"ehci: ASYNC list address register set while async schedule\n"
" is enabled and HC is enabled\n");
}
break;
}
*mmio = val;
trace_usb_ehci_opreg_change(addr + s->opregbase, addr2str(addr),
*mmio, old);
}
/*
* Write the qh back to guest physical memory. This step isn't
* in the EHCI spec but we need to do it since we don't share
* physical memory with our guest VM.
*
* The first three dwords are read-only for the EHCI, so skip them
* when writing back the qh.
*/
static void ehci_flush_qh(EHCIQueue *q)
{
uint32_t *qh = (uint32_t *) &q->qh;
uint32_t dwords = sizeof(EHCIqh) >> 2;
uint32_t addr = NLPTR_GET(q->qhaddr);
put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
}
// 4.10.2
static int ehci_qh_do_overlay(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int i;
int dtoggle;
int ping;
int eps;
int reload;
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
// remember values in fields to preserve in qh after overlay
dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
ping = q->qh.token & QTD_TOKEN_PING;
q->qh.current_qtd = p->qtdaddr;
q->qh.next_qtd = p->qtd.next;
q->qh.altnext_qtd = p->qtd.altnext;
q->qh.token = p->qtd.token;
eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
if (eps == EHCI_QH_EPS_HIGH) {
q->qh.token &= ~QTD_TOKEN_PING;
q->qh.token |= ping;
}
reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
for (i = 0; i < 5; i++) {
q->qh.bufptr[i] = p->qtd.bufptr[i];
}
if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
// preserve QH DT bit
q->qh.token &= ~QTD_TOKEN_DTOGGLE;
q->qh.token |= dtoggle;
}
q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
ehci_flush_qh(q);
return 0;
}
static int ehci_init_transfer(EHCIPacket *p)
{
uint32_t cpage, offset, bytes, plen;
dma_addr_t page;
cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
qemu_sglist_init(&p->sgl, p->queue->ehci->device, 5, p->queue->ehci->as);
while (bytes > 0) {
if (cpage > 4) {
fprintf(stderr, "cpage out of range (%u)\n", cpage);
qemu_sglist_destroy(&p->sgl);
return -1;
}
page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
page += offset;
plen = bytes;
if (plen > 4096 - offset) {
plen = 4096 - offset;
offset = 0;
cpage++;
}
qemu_sglist_add(&p->sgl, page, plen);
bytes -= plen;
}
return 0;
}
static void ehci_finish_transfer(EHCIQueue *q, int len)
{
uint32_t cpage, offset;
if (len > 0) {
/* update cpage & offset */
cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
offset += len;
cpage += offset >> QTD_BUFPTR_SH;
offset &= ~QTD_BUFPTR_MASK;
set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
q->qh.bufptr[0] |= offset;
}
}
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
{
EHCIPacket *p;
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
if (portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->complete(companion, packet);
return;
}
p = container_of(packet, EHCIPacket, packet);
assert(p->async == EHCI_ASYNC_INFLIGHT);
if (packet->status == USB_RET_REMOVE_FROM_QUEUE) {
trace_usb_ehci_packet_action(p->queue, p, "remove");
ehci_free_packet(p);
return;
}
trace_usb_ehci_packet_action(p->queue, p, "wakeup");
p->async = EHCI_ASYNC_FINISHED;
if (!p->queue->async) {
s->periodic_sched_active = PERIODIC_ACTIVE;
}
qemu_bh_schedule(s->async_bh);
}
static void ehci_execute_complete(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
uint32_t tbytes;
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
assert(p->async == EHCI_ASYNC_INITIALIZED ||
p->async == EHCI_ASYNC_FINISHED);
DPRINTF("execute_complete: qhaddr 0x%x, next 0x%x, qtdaddr 0x%x, "
"status %d, actual_length %d\n",
q->qhaddr, q->qh.next, q->qtdaddr,
p->packet.status, p->packet.actual_length);
switch (p->packet.status) {
case USB_RET_SUCCESS:
break;
case USB_RET_IOERROR:
case USB_RET_NODEV:
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
ehci_raise_irq(q->ehci, USBSTS_ERRINT);
break;
case USB_RET_STALL:
q->qh.token |= QTD_TOKEN_HALT;
ehci_raise_irq(q->ehci, USBSTS_ERRINT);
break;
case USB_RET_NAK:
set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
return; /* We're not done yet with this transaction */
case USB_RET_BABBLE:
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
ehci_raise_irq(q->ehci, USBSTS_ERRINT);
break;
default:
/* should not be triggerable */
fprintf(stderr, "USB invalid response %d\n", p->packet.status);
g_assert_not_reached();
}
/* TODO check 4.12 for splits */
tbytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
if (tbytes && p->pid == USB_TOKEN_IN) {
tbytes -= p->packet.actual_length;
if (tbytes) {
/* 4.15.1.2 must raise int on a short input packet */
ehci_raise_irq(q->ehci, USBSTS_INT);
if (q->async) {
q->ehci->int_req_by_async = true;
}
}
} else {
tbytes = 0;
}
DPRINTF("updating tbytes to %d\n", tbytes);
set_field(&q->qh.token, tbytes, QTD_TOKEN_TBYTES);
ehci_finish_transfer(q, p->packet.actual_length);
usb_packet_unmap(&p->packet, &p->sgl);
qemu_sglist_destroy(&p->sgl);
p->async = EHCI_ASYNC_NONE;
q->qh.token ^= QTD_TOKEN_DTOGGLE;
q->qh.token &= ~QTD_TOKEN_ACTIVE;
if (q->qh.token & QTD_TOKEN_IOC) {
ehci_raise_irq(q->ehci, USBSTS_INT);
if (q->async) {
q->ehci->int_req_by_async = true;
}
}
}
/* 4.10.3 returns "again" */
static int ehci_execute(EHCIPacket *p, const char *action)
{
USBEndpoint *ep;
int endp;
bool spd;
assert(p->async == EHCI_ASYNC_NONE ||
p->async == EHCI_ASYNC_INITIALIZED);
if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
fprintf(stderr, "Attempting to execute inactive qtd\n");
return -1;
}
if (get_field(p->qtd.token, QTD_TOKEN_TBYTES) > BUFF_SIZE) {
ehci_trace_guest_bug(p->queue->ehci,
"guest requested more bytes than allowed");
return -1;
}
if (!ehci_verify_pid(p->queue, &p->qtd)) {
ehci_queue_stopped(p->queue); /* Mark the ep in the prev dir stopped */
}
p->pid = ehci_get_pid(&p->qtd);
p->queue->last_pid = p->pid;
endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
ep = usb_ep_get(p->queue->dev, p->pid, endp);
if (p->async == EHCI_ASYNC_NONE) {
if (ehci_init_transfer(p) != 0) {
return -1;
}
spd = (p->pid == USB_TOKEN_IN && NLPTR_TBIT(p->qtd.altnext) == 0);
usb_packet_setup(&p->packet, p->pid, ep, 0, p->qtdaddr, spd,
(p->qtd.token & QTD_TOKEN_IOC) != 0);
if (usb_packet_map(&p->packet, &p->sgl)) {
qemu_sglist_destroy(&p->sgl);
return -1;
}
p->async = EHCI_ASYNC_INITIALIZED;
}
trace_usb_ehci_packet_action(p->queue, p, action);
usb_handle_packet(p->queue->dev, &p->packet);
DPRINTF("submit: qh 0x%x next 0x%x qtd 0x%x pid 0x%x len %zd endp 0x%x "
"status %d actual_length %d\n", p->queue->qhaddr, p->qtd.next,
p->qtdaddr, p->pid, p->packet.iov.size, endp, p->packet.status,
p->packet.actual_length);
if (p->packet.actual_length > BUFF_SIZE) {
fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
return -1;
}
return 1;
}
/* 4.7.2
*/
static int ehci_process_itd(EHCIState *ehci,
EHCIitd *itd,
uint32_t addr)
{
USBDevice *dev;
USBEndpoint *ep;
uint32_t i, len, pid, dir, devaddr, endp;
uint32_t pg, off, ptr1, ptr2, max, mult;
ehci->periodic_sched_active = PERIODIC_ACTIVE;
dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
for(i = 0; i < 8; i++) {
if (itd->transact[i] & ITD_XACT_ACTIVE) {
pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
len = get_field(itd->transact[i], ITD_XACT_LENGTH);
if (len > max * mult) {
len = max * mult;
}
if (len > BUFF_SIZE || pg > 6) {
return -1;
}
ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
qemu_sglist_init(&ehci->isgl, ehci->device, 2, ehci->as);
if (off + len > 4096) {
/* transfer crosses page border */
if (pg == 6) {
qemu_sglist_destroy(&ehci->isgl);
return -1; /* avoid page pg + 1 */
}
ptr2 = (itd->bufptr[pg + 1] & ITD_BUFPTR_MASK);
uint32_t len2 = off + len - 4096;
uint32_t len1 = len - len2;
qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
qemu_sglist_add(&ehci->isgl, ptr2, len2);
} else {
qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
}
dev = ehci_find_device(ehci, devaddr);
if (dev == NULL) {
ehci_trace_guest_bug(ehci, "no device found");
ehci->ipacket.status = USB_RET_NODEV;
ehci->ipacket.actual_length = 0;
} else {
pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
ep = usb_ep_get(dev, pid, endp);
if (ep && ep->type == USB_ENDPOINT_XFER_ISOC) {
usb_packet_setup(&ehci->ipacket, pid, ep, 0, addr, false,
(itd->transact[i] & ITD_XACT_IOC) != 0);
if (usb_packet_map(&ehci->ipacket, &ehci->isgl)) {
qemu_sglist_destroy(&ehci->isgl);
return -1;
}
usb_handle_packet(dev, &ehci->ipacket);
usb_packet_unmap(&ehci->ipacket, &ehci->isgl);
} else {
DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
ehci->ipacket.status = USB_RET_NAK;
ehci->ipacket.actual_length = 0;
}
}
qemu_sglist_destroy(&ehci->isgl);
switch (ehci->ipacket.status) {
case USB_RET_SUCCESS:
break;
default:
fprintf(stderr, "Unexpected iso usb result: %d\n",
ehci->ipacket.status);
/* Fall through */
case USB_RET_IOERROR:
case USB_RET_NODEV:
/* 3.3.2: XACTERR is only allowed on IN transactions */
if (dir) {
itd->transact[i] |= ITD_XACT_XACTERR;
ehci_raise_irq(ehci, USBSTS_ERRINT);
}
break;
case USB_RET_BABBLE:
itd->transact[i] |= ITD_XACT_BABBLE;
ehci_raise_irq(ehci, USBSTS_ERRINT);
break;
case USB_RET_NAK:
/* no data for us, so do a zero-length transfer */
ehci->ipacket.actual_length = 0;
break;
}
if (!dir) {
set_field(&itd->transact[i], len - ehci->ipacket.actual_length,
ITD_XACT_LENGTH); /* OUT */
} else {
set_field(&itd->transact[i], ehci->ipacket.actual_length,
ITD_XACT_LENGTH); /* IN */
}
if (itd->transact[i] & ITD_XACT_IOC) {
ehci_raise_irq(ehci, USBSTS_INT);
}
itd->transact[i] &= ~ITD_XACT_ACTIVE;
}
}
return 0;
}
/* This state is the entry point for asynchronous schedule
* processing. Entry here consitutes a EHCI start event state (4.8.5)
*/
static int ehci_state_waitlisthead(EHCIState *ehci, int async)
{
EHCIqh qh;
int i = 0;
int again = 0;
uint32_t entry = ehci->asynclistaddr;
/* set reclamation flag at start event (4.8.6) */
if (async) {
ehci_set_usbsts(ehci, USBSTS_REC);
}
ehci_queues_rip_unused(ehci, async);
/* Find the head of the list (4.9.1.1) */
for(i = 0; i < MAX_QH; i++) {
if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
sizeof(EHCIqh) >> 2) < 0) {
return 0;
}
ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
if (qh.epchar & QH_EPCHAR_H) {
if (async) {
entry |= (NLPTR_TYPE_QH << 1);
}
ehci_set_fetch_addr(ehci, async, entry);
ehci_set_state(ehci, async, EST_FETCHENTRY);
again = 1;
goto out;
}
entry = qh.next;
if (entry == ehci->asynclistaddr) {
break;
}
}
/* no head found for list. */
ehci_set_state(ehci, async, EST_ACTIVE);
out:
return again;
}
/* This state is the entry point for periodic schedule processing as
* well as being a continuation state for async processing.
*/
static int ehci_state_fetchentry(EHCIState *ehci, int async)
{
int again = 0;
uint32_t entry = ehci_get_fetch_addr(ehci, async);
if (NLPTR_TBIT(entry)) {
ehci_set_state(ehci, async, EST_ACTIVE);
goto out;
}
/* section 4.8, only QH in async schedule */
if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
fprintf(stderr, "non queue head request in async schedule\n");
return -1;
}
switch (NLPTR_TYPE_GET(entry)) {
case NLPTR_TYPE_QH:
ehci_set_state(ehci, async, EST_FETCHQH);
again = 1;
break;
case NLPTR_TYPE_ITD:
ehci_set_state(ehci, async, EST_FETCHITD);
again = 1;
break;
case NLPTR_TYPE_STITD:
ehci_set_state(ehci, async, EST_FETCHSITD);
again = 1;
break;
default:
/* TODO: handle FSTN type */
fprintf(stderr, "FETCHENTRY: entry at %X is of type %u "
"which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
return -1;
}
out:
return again;
}
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIQueue *q;
EHCIqh qh;
entry = ehci_get_fetch_addr(ehci, async);
q = ehci_find_queue_by_qh(ehci, entry, async);
if (q == NULL) {
q = ehci_alloc_queue(ehci, entry, async);
}
q->seen++;
if (q->seen > 1) {
/* we are going in circles -- stop processing */
ehci_set_state(ehci, async, EST_ACTIVE);
q = NULL;
goto out;
}
if (get_dwords(ehci, NLPTR_GET(q->qhaddr),
(uint32_t *) &qh, sizeof(EHCIqh) >> 2) < 0) {
q = NULL;
goto out;
}
ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &qh);
/*
* The overlay area of the qh should never be changed by the guest,
* except when idle, in which case the reset is a nop.
*/
if (!ehci_verify_qh(q, &qh)) {
if (ehci_reset_queue(q) > 0) {
ehci_trace_guest_bug(ehci, "guest updated active QH");
}
}
q->qh = qh;
q->transact_ctr = get_field(q->qh.epcap, QH_EPCAP_MULT);
if (q->transact_ctr == 0) { /* Guest bug in some versions of windows */
q->transact_ctr = 4;
}
if (q->dev == NULL) {
q->dev = ehci_find_device(q->ehci,
get_field(q->qh.epchar, QH_EPCHAR_DEVADDR));
}
if (async && (q->qh.epchar & QH_EPCHAR_H)) {
/* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
if (ehci->usbsts & USBSTS_REC) {
ehci_clear_usbsts(ehci, USBSTS_REC);
} else {
DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
" - done processing\n", q->qhaddr);
ehci_set_state(ehci, async, EST_ACTIVE);
q = NULL;
goto out;
}
}
#if EHCI_DEBUG
if (q->qhaddr != q->qh.next) {
DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
q->qhaddr,
q->qh.epchar & QH_EPCHAR_H,
q->qh.token & QTD_TOKEN_HALT,
q->qh.token & QTD_TOKEN_ACTIVE,
q->qh.next);
}
#endif
if (q->qh.token & QTD_TOKEN_HALT) {
ehci_set_state(ehci, async, EST_HORIZONTALQH);
} else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
(NLPTR_TBIT(q->qh.current_qtd) == 0) &&
(q->qh.current_qtd != 0)) {
q->qtdaddr = q->qh.current_qtd;
ehci_set_state(ehci, async, EST_FETCHQTD);
} else {
/* EHCI spec version 1.0 Section 4.10.2 */
ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
}
out:
return q;
}
static int ehci_state_fetchitd(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIitd itd;
assert(!async);
entry = ehci_get_fetch_addr(ehci, async);
if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
sizeof(EHCIitd) >> 2) < 0) {
return -1;
}
ehci_trace_itd(ehci, entry, &itd);
if (ehci_process_itd(ehci, &itd, entry) != 0) {
return -1;
}
put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
sizeof(EHCIitd) >> 2);
ehci_set_fetch_addr(ehci, async, itd.next);
ehci_set_state(ehci, async, EST_FETCHENTRY);
return 1;
}
static int ehci_state_fetchsitd(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIsitd sitd;
assert(!async);
entry = ehci_get_fetch_addr(ehci, async);
if (get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
sizeof(EHCIsitd) >> 2) < 0) {
return 0;
}
ehci_trace_sitd(ehci, entry, &sitd);
if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
/* siTD is not active, nothing to do */;
} else {
/* TODO: split transfers are not implemented */
warn_report("Skipping active siTD");
}
ehci_set_fetch_addr(ehci, async, sitd.next);
ehci_set_state(ehci, async, EST_FETCHENTRY);
return 1;
}
/* Section 4.10.2 - paragraph 3 */
static int ehci_state_advqueue(EHCIQueue *q)
{
#if 0
/* TO-DO: 4.10.2 - paragraph 2
* if I-bit is set to 1 and QH is not active
* go to horizontal QH
*/
if (I-bit set) {
ehci_set_state(ehci, async, EST_HORIZONTALQH);
goto out;
}
#endif
/*
* want data and alt-next qTD is valid
*/
if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
(NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
q->qtdaddr = q->qh.altnext_qtd;
ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
/*
* next qTD is valid
*/
} else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
q->qtdaddr = q->qh.next_qtd;
ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
/*
* no valid qTD, try next QH
*/
} else {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
}
return 1;
}
/* Section 4.10.2 - paragraph 4 */
static int ehci_state_fetchqtd(EHCIQueue *q)
{
EHCIqtd qtd;
EHCIPacket *p;
int again = 1;
uint32_t addr;
addr = NLPTR_GET(q->qtdaddr);
if (get_dwords(q->ehci, addr + 8, &qtd.token, 1) < 0) {
return 0;
}
barrier();
if (get_dwords(q->ehci, addr + 0, &qtd.next, 1) < 0 ||
get_dwords(q->ehci, addr + 4, &qtd.altnext, 1) < 0 ||
get_dwords(q->ehci, addr + 12, qtd.bufptr,
ARRAY_SIZE(qtd.bufptr)) < 0) {
return 0;
}
ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
p = QTAILQ_FIRST(&q->packets);
if (p != NULL) {
if (!ehci_verify_qtd(p, &qtd)) {
ehci_cancel_queue(q);
if (qtd.token & QTD_TOKEN_ACTIVE) {
ehci_trace_guest_bug(q->ehci, "guest updated active qTD");
}
p = NULL;
} else {
p->qtd = qtd;
ehci_qh_do_overlay(q);
}
}
if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
} else if (p != NULL) {
switch (p->async) {
case EHCI_ASYNC_NONE:
case EHCI_ASYNC_INITIALIZED:
/* Not yet executed (MULT), or previously nacked (int) packet */
ehci_set_state(q->ehci, q->async, EST_EXECUTE);
break;
case EHCI_ASYNC_INFLIGHT:
/* Check if the guest has added new tds to the queue */
again = ehci_fill_queue(QTAILQ_LAST(&q->packets));
/* Unfinished async handled packet, go horizontal */
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
break;
case EHCI_ASYNC_FINISHED:
/* Complete executing of the packet */
ehci_set_state(q->ehci, q->async, EST_EXECUTING);
break;
}
} else if (q->dev == NULL) {
ehci_trace_guest_bug(q->ehci, "no device attached to queue");
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
} else {
p = ehci_alloc_packet(q);
p->qtdaddr = q->qtdaddr;
p->qtd = qtd;
ehci_set_state(q->ehci, q->async, EST_EXECUTE);
}
return again;
}
static int ehci_state_horizqh(EHCIQueue *q)
{
int again = 0;
if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
again = 1;
} else {
ehci_set_state(q->ehci, q->async, EST_ACTIVE);
}
return again;
}
/* Returns "again" */
static int ehci_fill_queue(EHCIPacket *p)
{
USBEndpoint *ep = p->packet.ep;
EHCIQueue *q = p->queue;
EHCIqtd qtd = p->qtd;
uint32_t qtdaddr;
for (;;) {
if (NLPTR_TBIT(qtd.next) != 0) {
break;
}
qtdaddr = qtd.next;
/*
* Detect circular td lists, Windows creates these, counting on the
* active bit going low after execution to make the queue stop.
*/
QTAILQ_FOREACH(p, &q->packets, next) {
if (p->qtdaddr == qtdaddr) {
goto leave;
}
}
if (get_dwords(q->ehci, NLPTR_GET(qtdaddr),
(uint32_t *) &qtd, sizeof(EHCIqtd) >> 2) < 0) {
return -1;
}
ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
break;
}
if (!ehci_verify_pid(q, &qtd)) {
ehci_trace_guest_bug(q->ehci, "guest queued token with wrong pid");
break;
}
p = ehci_alloc_packet(q);
p->qtdaddr = qtdaddr;
p->qtd = qtd;
if (ehci_execute(p, "queue") == -1) {
return -1;
}
assert(p->packet.status == USB_RET_ASYNC);
p->async = EHCI_ASYNC_INFLIGHT;
}
leave:
usb_device_flush_ep_queue(ep->dev, ep);
return 1;
}
static int ehci_state_execute(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
int again = 0;
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
if (ehci_qh_do_overlay(q) != 0) {
return -1;
}
// TODO verify enough time remains in the uframe as in 4.4.1.1
// TODO write back ptr to async list when done or out of time
/* 4.10.3, bottom of page 82, go horizontal on transaction counter == 0 */
if (!q->async && q->transact_ctr == 0) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
goto out;
}
if (q->async) {
ehci_set_usbsts(q->ehci, USBSTS_REC);
}
again = ehci_execute(p, "process");
if (again == -1) {
goto out;
}
if (p->packet.status == USB_RET_ASYNC) {
ehci_flush_qh(q);
trace_usb_ehci_packet_action(p->queue, p, "async");
p->async = EHCI_ASYNC_INFLIGHT;
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
if (q->async) {
again = ehci_fill_queue(p);
} else {
again = 1;
}
goto out;
}
ehci_set_state(q->ehci, q->async, EST_EXECUTING);
again = 1;
out:
return again;
}
static int ehci_state_executing(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
ehci_execute_complete(q);
/* 4.10.3 */
if (!q->async && q->transact_ctr > 0) {
q->transact_ctr--;
}
/* 4.10.5 */
if (p->packet.status == USB_RET_NAK) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
} else {
ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
}
ehci_flush_qh(q);
return 1;
}
static int ehci_state_writeback(EHCIQueue *q)
{
EHCIPacket *p = QTAILQ_FIRST(&q->packets);
uint32_t *qtd, addr;
int again = 0;
/* Write back the QTD from the QH area */
assert(p != NULL);
assert(p->qtdaddr == q->qtdaddr);
ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
qtd = (uint32_t *) &q->qh.next_qtd;
addr = NLPTR_GET(p->qtdaddr);
put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2);
ehci_free_packet(p);
/*
* EHCI specs say go horizontal here.
*
* We can also advance the queue here for performance reasons. We
* need to take care to only take that shortcut in case we've
* processed the qtd just written back without errors, i.e. halt
* bit is clear.
*/
if (q->qh.token & QTD_TOKEN_HALT) {
ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
again = 1;
} else {
ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
again = 1;
}
return again;
}
/*
* This is the state machine that is common to both async and periodic
*/
static void ehci_advance_state(EHCIState *ehci, int async)
{
EHCIQueue *q = NULL;
int itd_count = 0;
int again;
do {
switch(ehci_get_state(ehci, async)) {
case EST_WAITLISTHEAD:
again = ehci_state_waitlisthead(ehci, async);
break;
case EST_FETCHENTRY:
again = ehci_state_fetchentry(ehci, async);
break;
case EST_FETCHQH:
q = ehci_state_fetchqh(ehci, async);
if (q != NULL) {
assert(q->async == async);
again = 1;
} else {
again = 0;
}
break;
case EST_FETCHITD:
again = ehci_state_fetchitd(ehci, async);
itd_count++;
break;
case EST_FETCHSITD:
again = ehci_state_fetchsitd(ehci, async);
itd_count++;
break;
case EST_ADVANCEQUEUE:
assert(q != NULL);
again = ehci_state_advqueue(q);
break;
case EST_FETCHQTD:
assert(q != NULL);
again = ehci_state_fetchqtd(q);
break;
case EST_HORIZONTALQH:
assert(q != NULL);
again = ehci_state_horizqh(q);
break;
case EST_EXECUTE:
assert(q != NULL);
again = ehci_state_execute(q);
if (async) {
ehci->async_stepdown = 0;
}
break;
case EST_EXECUTING:
assert(q != NULL);
if (async) {
ehci->async_stepdown = 0;
}
again = ehci_state_executing(q);
break;
case EST_WRITEBACK:
assert(q != NULL);
again = ehci_state_writeback(q);
if (!async) {
ehci->periodic_sched_active = PERIODIC_ACTIVE;
}
break;
default:
fprintf(stderr, "Bad state!\n");
g_assert_not_reached();
}
if (again < 0 || itd_count > 16) {
/* TODO: notify guest (raise HSE irq?) */
fprintf(stderr, "processing error - resetting ehci HC\n");
ehci_reset(ehci);
again = 0;
}
}
while (again);
}
static void ehci_advance_async_state(EHCIState *ehci)
{
const int async = 1;
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
if (!ehci_async_enabled(ehci)) {
break;
}
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
case EST_ACTIVE:
if (!ehci_async_enabled(ehci)) {
ehci_queues_rip_all(ehci, async);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
/* make sure guest has acknowledged the doorbell interrupt */
/* TO-DO: is this really needed? */
if (ehci->usbsts & USBSTS_IAA) {
DPRINTF("IAA status bit still set.\n");
break;
}
/* check that address register has been set */
if (ehci->asynclistaddr == 0) {
break;
}
ehci_set_state(ehci, async, EST_WAITLISTHEAD);
ehci_advance_state(ehci, async);
/* If the doorbell is set, the guest wants to make a change to the
* schedule. The host controller needs to release cached data.
* (section 4.8.2)
*/
if (ehci->usbcmd & USBCMD_IAAD) {
/* Remove all unseen qhs from the async qhs queue */
ehci_queues_rip_unseen(ehci, async);
trace_usb_ehci_doorbell_ack();
ehci->usbcmd &= ~USBCMD_IAAD;
ehci_raise_irq(ehci, USBSTS_IAA);
}
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad asynchronous state %d. "
"Resetting to active\n", ehci->astate);
g_assert_not_reached();
}
}
static void ehci_advance_periodic_state(EHCIState *ehci)
{
uint32_t entry;
uint32_t list;
const int async = 0;
// 4.6
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
} else
break;
case EST_ACTIVE:
if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
ehci_queues_rip_all(ehci, async);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
list = ehci->periodiclistbase & 0xfffff000;
/* check that register has been set */
if (list == 0) {
break;
}
list |= ((ehci->frindex & 0x1ff8) >> 1);
if (get_dwords(ehci, list, &entry, 1) < 0) {
break;
}
DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
ehci->frindex / 8, list, entry);
ehci_set_fetch_addr(ehci, async,entry);
ehci_set_state(ehci, async, EST_FETCHENTRY);
ehci_advance_state(ehci, async);
ehci_queues_rip_unused(ehci, async);
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad periodic state %d. "
"Resetting to active\n", ehci->pstate);
g_assert_not_reached();
}
}
static void ehci_update_frindex(EHCIState *ehci, int uframes)
{
if (!ehci_enabled(ehci) && ehci->pstate == EST_INACTIVE) {
return;
}
/* Generate FLR interrupt if frame index rolls over 0x2000 */
if ((ehci->frindex % 0x2000) + uframes >= 0x2000) {
ehci_raise_irq(ehci, USBSTS_FLR);
}
/* How many times will frindex roll over 0x4000 with this frame count?
* usbsts_frindex is decremented by 0x4000 on rollover until it reaches 0
*/
int rollovers = (ehci->frindex + uframes) / 0x4000;
if (rollovers > 0) {
if (ehci->usbsts_frindex >= (rollovers * 0x4000)) {
ehci->usbsts_frindex -= 0x4000 * rollovers;
} else {
ehci->usbsts_frindex = 0;
}
}
ehci->frindex = (ehci->frindex + uframes) % 0x4000;
}
static void ehci_work_bh(void *opaque)
{
EHCIState *ehci = opaque;
int need_timer = 0;
int64_t expire_time, t_now;
uint64_t ns_elapsed;
uint64_t uframes, skipped_uframes;
int i;
if (ehci->working) {
return;
}
ehci->working = true;
t_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
ns_elapsed = t_now - ehci->last_run_ns;
uframes = ns_elapsed / UFRAME_TIMER_NS;
if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
need_timer++;
if (uframes > (ehci->maxframes * 8)) {
skipped_uframes = uframes - (ehci->maxframes * 8);
ehci_update_frindex(ehci, skipped_uframes);
ehci->last_run_ns += UFRAME_TIMER_NS * skipped_uframes;
uframes -= skipped_uframes;
DPRINTF("WARNING - EHCI skipped %d uframes\n", skipped_uframes);
}
for (i = 0; i < uframes; i++) {
/*
* If we're running behind schedule, we should not catch up
* too fast, as that will make some guests unhappy:
* 1) We must process a minimum of MIN_UFR_PER_TICK frames,
* otherwise we will never catch up
* 2) Process frames until the guest has requested an irq (IOC)
*/
if (i >= MIN_UFR_PER_TICK) {
ehci_commit_irq(ehci);
if ((ehci->usbsts & USBINTR_MASK) & ehci->usbintr) {
break;
}
}
if (ehci->periodic_sched_active) {
ehci->periodic_sched_active--;
}
ehci_update_frindex(ehci, 1);
if ((ehci->frindex & 7) == 0) {
ehci_advance_periodic_state(ehci);
}
ehci->last_run_ns += UFRAME_TIMER_NS;
}
} else {
ehci->periodic_sched_active = 0;
ehci_update_frindex(ehci, uframes);
ehci->last_run_ns += UFRAME_TIMER_NS * uframes;
}
if (ehci->periodic_sched_active) {
ehci->async_stepdown = 0;
} else if (ehci->async_stepdown < ehci->maxframes / 2) {
ehci->async_stepdown++;
}
/* Async is not inside loop since it executes everything it can once
* called
*/
if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
need_timer++;
ehci_advance_async_state(ehci);
}
ehci_commit_irq(ehci);
if (ehci->usbsts_pending) {
need_timer++;
ehci->async_stepdown = 0;
}
if (ehci_enabled(ehci) && (ehci->usbintr & USBSTS_FLR)) {
need_timer++;
}
if (need_timer) {
/* If we've raised int, we speed up the timer, so that we quickly
* notice any new packets queued up in response */
if (ehci->int_req_by_async && (ehci->usbsts & USBSTS_INT)) {
expire_time = t_now +
NANOSECONDS_PER_SECOND / (FRAME_TIMER_FREQ * 4);
ehci->int_req_by_async = false;
} else {
expire_time = t_now + (NANOSECONDS_PER_SECOND
* (ehci->async_stepdown+1) / FRAME_TIMER_FREQ);
}
timer_mod(ehci->frame_timer, expire_time);
}
ehci->working = false;
}
static void ehci_work_timer(void *opaque)
{
EHCIState *ehci = opaque;
qemu_bh_schedule(ehci->async_bh);
}
static const MemoryRegionOps ehci_mmio_caps_ops = {
.read = ehci_caps_read,
.write = ehci_caps_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.impl.min_access_size = 1,
.impl.max_access_size = 1,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const MemoryRegionOps ehci_mmio_opreg_ops = {
.read = ehci_opreg_read,
.write = ehci_opreg_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const MemoryRegionOps ehci_mmio_port_ops = {
.read = ehci_port_read,
.write = ehci_port_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static USBPortOps ehci_port_ops = {
.attach = ehci_attach,
.detach = ehci_detach,
.child_detach = ehci_child_detach,
.wakeup = ehci_wakeup,
.complete = ehci_async_complete_packet,
};
static USBBusOps ehci_bus_ops_companion = {
.register_companion = ehci_register_companion,
.wakeup_endpoint = ehci_wakeup_endpoint,
};
static USBBusOps ehci_bus_ops_standalone = {
.wakeup_endpoint = ehci_wakeup_endpoint,
};
static int usb_ehci_pre_save(void *opaque)
{
EHCIState *ehci = opaque;
uint32_t new_frindex;
/* Round down frindex to a multiple of 8 for migration compatibility */
new_frindex = ehci->frindex & ~7;
ehci->last_run_ns -= (ehci->frindex - new_frindex) * UFRAME_TIMER_NS;
ehci->frindex = new_frindex;
return 0;
}
static int usb_ehci_post_load(void *opaque, int version_id)
{
EHCIState *s = opaque;
int i;
for (i = 0; i < NB_PORTS; i++) {
USBPort *companion = s->companion_ports[i];
if (companion == NULL) {
continue;
}
if (s->portsc[i] & PORTSC_POWNER) {
companion->dev = s->ports[i].dev;
} else {
companion->dev = NULL;
}
}
return 0;
}
static void usb_ehci_vm_state_change(void *opaque, bool running, RunState state)
{
EHCIState *ehci = opaque;
/*
* We don't migrate the EHCIQueue-s, instead we rebuild them for the
* schedule in guest memory. We must do the rebuilt ASAP, so that
* USB-devices which have async handled packages have a packet in the
* ep queue to match the completion with.
*/
if (state == RUN_STATE_RUNNING) {
ehci_advance_async_state(ehci);
}
/*
* The schedule rebuilt from guest memory could cause the migration dest
* to miss a QH unlink, and fail to cancel packets, since the unlinked QH
* will never have existed on the destination. Therefor we must flush the
* async schedule on savevm to catch any not yet noticed unlinks.
*/
if (state == RUN_STATE_SAVE_VM) {
ehci_advance_async_state(ehci);
ehci_queues_rip_unseen(ehci, 1);
}
}
const VMStateDescription vmstate_ehci = {
.name = "ehci-core",
.version_id = 2,
.minimum_version_id = 1,
.pre_save = usb_ehci_pre_save,
.post_load = usb_ehci_post_load,
.fields = (VMStateField[]) {
/* mmio registers */
VMSTATE_UINT32(usbcmd, EHCIState),
VMSTATE_UINT32(usbsts, EHCIState),
VMSTATE_UINT32_V(usbsts_pending, EHCIState, 2),
VMSTATE_UINT32_V(usbsts_frindex, EHCIState, 2),
VMSTATE_UINT32(usbintr, EHCIState),
VMSTATE_UINT32(frindex, EHCIState),
VMSTATE_UINT32(ctrldssegment, EHCIState),
VMSTATE_UINT32(periodiclistbase, EHCIState),
VMSTATE_UINT32(asynclistaddr, EHCIState),
VMSTATE_UINT32(configflag, EHCIState),
VMSTATE_UINT32(portsc[0], EHCIState),
VMSTATE_UINT32(portsc[1], EHCIState),
VMSTATE_UINT32(portsc[2], EHCIState),
VMSTATE_UINT32(portsc[3], EHCIState),
VMSTATE_UINT32(portsc[4], EHCIState),
VMSTATE_UINT32(portsc[5], EHCIState),
/* frame timer */
VMSTATE_TIMER_PTR(frame_timer, EHCIState),
VMSTATE_UINT64(last_run_ns, EHCIState),
VMSTATE_UINT32(async_stepdown, EHCIState),
/* schedule state */
VMSTATE_UINT32(astate, EHCIState),
VMSTATE_UINT32(pstate, EHCIState),
VMSTATE_UINT32(a_fetch_addr, EHCIState),
VMSTATE_UINT32(p_fetch_addr, EHCIState),
VMSTATE_END_OF_LIST()
}
};
void usb_ehci_realize(EHCIState *s, DeviceState *dev, Error **errp)
{
int i;
if (s->portnr > NB_PORTS) {
error_setg(errp, "Too many ports! Max. port number is %d.",
NB_PORTS);
return;
}
if (s->maxframes < 8 || s->maxframes > 512) {
error_setg(errp, "maxframes %d out if range (8 .. 512)",
s->maxframes);
return;
}
memory_region_add_subregion(&s->mem, s->capsbase, &s->mem_caps);
memory_region_add_subregion(&s->mem, s->opregbase, &s->mem_opreg);
memory_region_add_subregion(&s->mem, s->opregbase + s->portscbase,
&s->mem_ports);
usb_bus_new(&s->bus, sizeof(s->bus), s->companion_enable ?
&ehci_bus_ops_companion : &ehci_bus_ops_standalone, dev);
for (i = 0; i < s->portnr; i++) {
usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
USB_SPEED_MASK_HIGH);
s->ports[i].dev = 0;
}
s->frame_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ehci_work_timer, s);
s->async_bh = qemu_bh_new(ehci_work_bh, s);
s->device = dev;
s->vmstate = qemu_add_vm_change_state_handler(usb_ehci_vm_state_change, s);
}
void usb_ehci_unrealize(EHCIState *s, DeviceState *dev)
{
trace_usb_ehci_unrealize();
if (s->frame_timer) {
timer_free(s->frame_timer);
s->frame_timer = NULL;
}
if (s->async_bh) {
qemu_bh_delete(s->async_bh);
}
ehci_queues_rip_all(s, 0);
ehci_queues_rip_all(s, 1);
memory_region_del_subregion(&s->mem, &s->mem_caps);
memory_region_del_subregion(&s->mem, &s->mem_opreg);
memory_region_del_subregion(&s->mem, &s->mem_ports);
usb_bus_release(&s->bus);
if (s->vmstate) {
qemu_del_vm_change_state_handler(s->vmstate);
}
}
void usb_ehci_init(EHCIState *s, DeviceState *dev)
{
/* 2.2 host controller interface version */
s->caps[0x00] = (uint8_t)(s->opregbase - s->capsbase);
s->caps[0x01] = 0x00;
s->caps[0x02] = 0x00;
s->caps[0x03] = 0x01; /* HC version */
s->caps[0x04] = s->portnr; /* Number of downstream ports */
s->caps[0x05] = 0x00; /* No companion ports at present */
s->caps[0x06] = 0x00;
s->caps[0x07] = 0x00;
s->caps[0x08] = 0x80; /* We can cache whole frame, no 64-bit */
s->caps[0x0a] = 0x00;
s->caps[0x0b] = 0x00;
QTAILQ_INIT(&s->aqueues);
QTAILQ_INIT(&s->pqueues);
usb_packet_init(&s->ipacket);
memory_region_init(&s->mem, OBJECT(dev), "ehci", MMIO_SIZE);
memory_region_init_io(&s->mem_caps, OBJECT(dev), &ehci_mmio_caps_ops, s,
"capabilities", CAPA_SIZE);
memory_region_init_io(&s->mem_opreg, OBJECT(dev), &ehci_mmio_opreg_ops, s,
"operational", s->portscbase);
memory_region_init_io(&s->mem_ports, OBJECT(dev), &ehci_mmio_port_ops, s,
"ports", 4 * s->portnr);
}
void usb_ehci_finalize(EHCIState *s)
{
usb_packet_cleanup(&s->ipacket);
}
/*
* vim: expandtab ts=4
*/