New parse tree mechanism

[git-p4: depot-paths = "//depot/code/antlr4/main/": change = 9037]
This commit is contained in:
parrt 2011-09-03 09:18:26 -08:00
parent 104f39acde
commit c1aa0fcd10
6 changed files with 107 additions and 915 deletions

View File

@ -624,6 +624,15 @@ public abstract class BaseRecognizer extends Recognizer<ParserATNSimulator> {
System.out.println();
}
/** Indicate that the recognizer has changed internal state that is
* consistent with the ATN state passed in. This way we always know
* where we are in the ATN as the parser goes along. The rule
* context objects form a stack that lets us see the stack of
* invoking rules. Combine this and we have complete ATN
* configuration information.
*/
public void move(int atnState) { _ctx.s = atnState; }
/* In v3, programmers altered error messages by overriding
displayRecognitionError() and possibly getTokenErrorDisplay().
They overrode emitErrorMessage(String) to change where the output goes.

View File

@ -29,6 +29,9 @@
package org.antlr.v4.runtime;
import org.antlr.v4.runtime.atn.*;
import org.antlr.v4.runtime.tree.ParseTree;
import java.util.List;
/** Rules can return start/stop info as well as possible trees and templates.
* Each context knows about invoking context and pointer into ATN so we
@ -37,12 +40,37 @@ import org.antlr.v4.runtime.atn.*;
* Used during parse to record stack of rule invocations and during
* ATN simulation to record invoking states.
*/
public class RuleContext {
public class RuleContext implements ParseTree.RuleNode {
public static final RuleContext EMPTY = new RuleContext();
/** What context invoked this rule? */
public RuleContext parent;
/** If we are debugging or building a parse tree for a visitor,
* we need to track all of the tokens and rule invocations associated
* with this rule's context. This is empty for normal parsing
* operation because we don't the need to track the details about
* how we parse this rule.
*/
public List<ParseTree> children;
/** For debugging/tracing purposes, we want to track all of the nodes in
* the ATN traversed by the parser for a particular rule.
* This list indicates the sequence of ATN nodes used to match
* the elements of the children list. This list does not include
* ATN nodes and other rules used to match rule invocations. It
* tracks the rule invocation node itself but nothing inside that
* other rule.
*
* There is a one-to-one correspondence between the children and
* states list. children[i] is an element matched at node states[i]
* in the ATN.
*
* The parser move method updates field s and adds it to this list
* if we are debugging/tracing.
*/
public List<Integer> states;
/** Current ATN state number we are executing.
*
* Not used during ATN simulation; only used during parse that updates
@ -107,6 +135,7 @@ public class RuleContext {
}
return n;
}
/** Two contexts are equals() if both have
* same call stack; walk upwards to the root.
* Note that you may be comparing contexts in different alt trees.
@ -204,6 +233,18 @@ public class RuleContext {
return invokingState == -1;
}
public ParseTree getChild(int i) {
return children!=null ? children.get(i) : null;
}
public RuleContext getRuleContext() { return this; }
public ParseTree getParent() { return parent; }
public Object getPayload() { return this; }
public int getChildCount() { return children!=null ? children.size() : 0; }
public String toString() {
return toString(null);
}

View File

@ -1,109 +0,0 @@
/*
[The "BSD license"]
Copyright (c) 2005-2009 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.antlr.v4.runtime.debug;
import org.antlr.runtime.tree.ParseTree;
import org.antlr.v4.runtime.RecognitionException;
import org.antlr.v4.runtime.Token;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/** This parser listener tracks rule entry/exit and token matches
* to build a simple parse tree using ParseTree nodes.
*/
public class ParseTreeBuilder extends BlankDebugEventListener {
public static final String EPSILON_PAYLOAD = "<epsilon>";
Stack callStack = new Stack();
List hiddenTokens = new ArrayList();
int backtracking = 0;
public ParseTreeBuilder(String grammarName) {
ParseTree root = create("<grammar "+grammarName+">");
callStack.push(root);
}
public ParseTree getTree() {
return (ParseTree)callStack.elementAt(0);
}
/** What kind of node to create. You might want to override
* so I factored out creation here.
*/
public ParseTree create(Object payload) {
return new ParseTree(payload);
}
public ParseTree epsilonNode() {
return create(EPSILON_PAYLOAD);
}
/** Backtracking or cyclic DFA, don't want to add nodes to tree */
public void enterDecision(int d, boolean couldBacktrack) { backtracking++; }
public void exitDecision(int i) { backtracking--; }
public void enterRule(String filename, String ruleName) {
if ( backtracking>0 ) return;
ParseTree parentRuleNode = (ParseTree)callStack.peek();
ParseTree ruleNode = create(ruleName);
parentRuleNode.addChild(ruleNode);
callStack.push(ruleNode);
}
public void exitRule(String filename, String ruleName) {
if ( backtracking>0 ) return;
ParseTree ruleNode = (ParseTree)callStack.peek();
if ( ruleNode.getChildCount()==0 ) {
ruleNode.addChild(epsilonNode());
}
callStack.pop();
}
public void consumeToken(Token token) {
if ( backtracking>0 ) return;
ParseTree ruleNode = (ParseTree)callStack.peek();
ParseTree elementNode = create(token);
elementNode.hiddenTokens = this.hiddenTokens;
this.hiddenTokens = new ArrayList();
ruleNode.addChild(elementNode);
}
public void consumeHiddenToken(Token token) {
if ( backtracking>0 ) return;
hiddenTokens.add(token);
}
public void recognitionException(RecognitionException e) {
if ( backtracking>0 ) return;
ParseTree ruleNode = (ParseTree)callStack.peek();
ParseTree errorNode = create(e);
ruleNode.addChild(errorNode);
}
}

View File

@ -1,722 +0,0 @@
/*
[The "BSD license"]
Copyright (c) 2005-2009 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.antlr.v4.runtime.debug;
import org.antlr.runtime.misc.DoubleKeyMap;
import org.antlr.v4.runtime.*;
import java.util.*;
/** Using the debug event interface, track what is happening in the parser
* and record statistics about the runtime.
*/
public class Profiler extends BlankDebugEventListener {
public static final String DATA_SEP = "\t";
public static final String newline = System.getProperty("line.separator");
static boolean dump = false;
public static class ProfileStats {
public String Version;
public String name;
public int numRuleInvocations;
public int numUniqueRulesInvoked;
public int numDecisionEvents;
public int numDecisionsCovered;
public int numDecisionsThatPotentiallyBacktrack;
public int numDecisionsThatDoBacktrack;
public int maxRuleInvocationDepth;
public float avgkPerDecisionEvent;
public float avgkPerBacktrackingDecisionEvent;
public float averageDecisionPercentBacktracks;
public int numBacktrackOccurrences; // doesn't count gated DFA edges
public int numFixedDecisions;
public int minDecisionMaxFixedLookaheads;
public int maxDecisionMaxFixedLookaheads;
public int avgDecisionMaxFixedLookaheads;
public int stddevDecisionMaxFixedLookaheads;
public int numCyclicDecisions;
public int minDecisionMaxCyclicLookaheads;
public int maxDecisionMaxCyclicLookaheads;
public int avgDecisionMaxCyclicLookaheads;
public int stddevDecisionMaxCyclicLookaheads;
// int Stats.min(toArray(decisionMaxSynPredLookaheads);
// int Stats.max(toArray(decisionMaxSynPredLookaheads);
// int Stats.avg(toArray(decisionMaxSynPredLookaheads);
// int Stats.stddev(toArray(decisionMaxSynPredLookaheads);
public int numSemanticPredicates;
public int numTokens;
public int numHiddenTokens;
public int numCharsMatched;
public int numHiddenCharsMatched;
public int numReportedErrors;
public int numMemoizationCacheHits;
public int numMemoizationCacheMisses;
public int numGuessingRuleInvocations;
public int numMemoizationCacheEntries;
}
public static class DecisionDescriptor {
public int decision;
public String fileName;
public String ruleName;
public int line;
public int pos;
public boolean couldBacktrack;
public int n;
public float avgk; // avg across all decision events
public int maxk;
public int numBacktrackOccurrences;
public int numSemPredEvals;
}
// all about a specific exec of a single decision
public static class DecisionEvent {
public DecisionDescriptor decision;
public int startIndex;
public int k;
public boolean backtracks; // doesn't count gated DFA edges
public boolean evalSemPred;
public long startTime;
public long stopTime;
public int numMemoizationCacheHits;
public int numMemoizationCacheMisses;
}
/** Because I may change the stats, I need to track that for later
* computations to be consistent.
*/
public static final String Version = "3";
public static final String RUNTIME_STATS_FILENAME = "runtime.stats";
/** Ack, should not store parser; can't do remote stuff. Well, we pass
* input stream around too so I guess it's ok.
*/
public DebugParser parser = null;
// working variables
protected int ruleLevel = 0;
//protected int decisionLevel = 0;
protected Token lastRealTokenTouchedInDecision;
protected Set<String> uniqueRules = new HashSet<String>();
protected Stack<String> currentGrammarFileName = new Stack();
protected Stack<String> currentRuleName = new Stack();
protected Stack<Integer> currentLine = new Stack();
protected Stack<Integer> currentPos = new Stack();
// Vector<DecisionStats>
//protected Vector decisions = new Vector(200); // need setSize
protected DoubleKeyMap<String,Integer, DecisionDescriptor> decisions =
new DoubleKeyMap<String,Integer, DecisionDescriptor>();
// Record a DecisionData for each decision we hit while parsing
protected List<DecisionEvent> decisionEvents = new ArrayList<DecisionEvent>();
protected Stack<DecisionEvent> decisionStack = new Stack<DecisionEvent>();
protected int backtrackDepth;
ProfileStats stats = new ProfileStats();
public Profiler() {
}
public Profiler(DebugParser parser) {
this.parser = parser;
}
public void enterRule(String grammarFileName, String ruleName) {
// System.out.println("enterRule "+grammarFileName+":"+ruleName);
ruleLevel++;
stats.numRuleInvocations++;
uniqueRules.add(grammarFileName+":"+ruleName);
stats.maxRuleInvocationDepth = Math.max(stats.maxRuleInvocationDepth, ruleLevel);
currentGrammarFileName.push(grammarFileName);
currentRuleName.push(ruleName);
}
public void exitRule(String grammarFileName, String ruleName) {
ruleLevel--;
currentGrammarFileName.pop();
currentRuleName.pop();
}
/** Track memoization; this is not part of standard debug interface
* but is triggered by profiling. Code gen inserts an override
* for this method in the recognizer, which triggers this method.
* Called from alreadyParsedRule().
*/
public void examineRuleMemoization(IntStream input,
int ruleIndex,
int stopIndex, // index or MEMO_RULE_UNKNOWN...
String ruleName)
{
if (dump) System.out.println("examine memo "+ruleName+" at "+input.index()+": "+stopIndex);
if ( stopIndex== BaseRecognizer.MEMO_RULE_UNKNOWN ) {
//System.out.println("rule "+ruleIndex+" missed @ "+input.index());
stats.numMemoizationCacheMisses++;
stats.numGuessingRuleInvocations++; // we'll have to enter
currentDecision().numMemoizationCacheMisses++;
}
else {
// regardless of rule success/failure, if in cache, we have a cache hit
//System.out.println("rule "+ruleIndex+" hit @ "+input.index());
stats.numMemoizationCacheHits++;
currentDecision().numMemoizationCacheHits++;
}
}
/** Warning: doesn't track success/failure, just unique recording event */
public void memoize(IntStream input,
int ruleIndex,
int ruleStartIndex,
String ruleName)
{
// count how many entries go into table
if (dump) System.out.println("memoize "+ruleName);
stats.numMemoizationCacheEntries++;
}
@Override
public void location(int line, int pos) {
currentLine.push(line);
currentPos.push(pos);
}
public void enterDecision(int decisionNumber, boolean couldBacktrack) {
lastRealTokenTouchedInDecision = null;
stats.numDecisionEvents++;
int startingLookaheadIndex = parser.getTokenStream().index();
TokenStream input = parser.getTokenStream();
if ( dump ) System.out.println("enterDecision canBacktrack="+couldBacktrack+" "+ decisionNumber +
" backtrack depth " + backtrackDepth +
" @ " + input.get(input.index()) +
" rule " +locationDescription());
String g = (String) currentGrammarFileName.peek();
DecisionDescriptor descriptor = decisions.get(g, decisionNumber);
if ( descriptor == null ) {
descriptor = new DecisionDescriptor();
decisions.put(g, decisionNumber, descriptor);
descriptor.decision = decisionNumber;
descriptor.fileName = (String)currentGrammarFileName.peek();
descriptor.ruleName = (String)currentRuleName.peek();
descriptor.line = (Integer)currentLine.peek();
descriptor.pos = (Integer)currentPos.peek();
descriptor.couldBacktrack = couldBacktrack;
}
descriptor.n++;
DecisionEvent d = new DecisionEvent();
decisionStack.push(d);
d.decision = descriptor;
d.startTime = System.currentTimeMillis();
d.startIndex = startingLookaheadIndex;
}
public void exitDecision(int decisionNumber) {
DecisionEvent d = decisionStack.pop();
d.stopTime = System.currentTimeMillis();
int lastTokenIndex = lastRealTokenTouchedInDecision.getTokenIndex();
int numHidden = getNumberOfHiddenTokens(d.startIndex, lastTokenIndex);
int depth = lastTokenIndex - d.startIndex - numHidden + 1; // +1 counts consuming start token as 1
d.k = depth;
d.decision.maxk = Math.max(d.decision.maxk, depth);
if (dump) System.out.println("exitDecision "+decisionNumber+" in "+d.decision.ruleName+
" lookahead "+d.k +" max token "+lastRealTokenTouchedInDecision);
decisionEvents.add(d); // done with decision; track all
}
public void consumeToken(Token token) {
if (dump) System.out.println("consume token "+token);
if ( !inDecision() ) {
stats.numTokens++;
return;
}
if ( lastRealTokenTouchedInDecision==null ||
lastRealTokenTouchedInDecision.getTokenIndex() < token.getTokenIndex() )
{
lastRealTokenTouchedInDecision = token;
}
DecisionEvent d = currentDecision();
// compute lookahead depth
int thisRefIndex = token.getTokenIndex();
int numHidden = getNumberOfHiddenTokens(d.startIndex, thisRefIndex);
int depth = thisRefIndex - d.startIndex - numHidden + 1; // +1 counts consuming start token as 1
//d.maxk = Math.max(d.maxk, depth);
if (dump) System.out.println("consume "+thisRefIndex+" "+depth+" tokens ahead in "+
d.decision.ruleName+"-"+d.decision.decision+" start index "+d.startIndex);
}
/** The parser is in a decision if the decision depth > 0. This
* works for backtracking also, which can have nested decisions.
*/
public boolean inDecision() {
return decisionStack.size()>0;
}
public void consumeHiddenToken(Token token) {
//System.out.println("consume hidden token "+token);
if ( !inDecision() ) stats.numHiddenTokens++;
}
/** Track refs to lookahead if in a fixed/nonfixed decision.
*/
public void LT(int i, Token t) {
if ( inDecision() && i>0 ) {
DecisionEvent d = currentDecision();
if (dump) System.out.println("LT("+i+")="+t+" index "+t.getTokenIndex()+" relative to "+d.decision.ruleName+"-"+
d.decision.decision+" start index "+d.startIndex);
if ( lastRealTokenTouchedInDecision==null ||
lastRealTokenTouchedInDecision.getTokenIndex() < t.getTokenIndex() )
{
lastRealTokenTouchedInDecision = t;
if (dump) System.out.println("set last token "+lastRealTokenTouchedInDecision);
}
// get starting index off stack
// int stackTop = lookaheadStack.size()-1;
// Integer startingIndex = (Integer)lookaheadStack.get(stackTop);
// // compute lookahead depth
// int thisRefIndex = parser.getTokenStream().index();
// int numHidden =
// getNumberOfHiddenTokens(startingIndex.intValue(), thisRefIndex);
// int depth = i + thisRefIndex - startingIndex.intValue() - numHidden;
// /*
// System.out.println("LT("+i+") @ index "+thisRefIndex+" is depth "+depth+
// " max is "+maxLookaheadInCurrentDecision);
// */
// if ( depth>maxLookaheadInCurrentDecision ) {
// maxLookaheadInCurrentDecision = depth;
// }
// d.maxk = currentDecision()/
}
}
/** Track backtracking decisions. You'll see a fixed or cyclic decision
* and then a backtrack.
*
* enter rule
* ...
* enter decision
* LA and possibly consumes (for cyclic DFAs)
* begin backtrack level
* mark m
* rewind m
* end backtrack level, success
* exit decision
* ...
* exit rule
*/
public void beginBacktrack(int level) {
if (dump) System.out.println("enter backtrack "+level);
backtrackDepth++;
DecisionEvent e = currentDecision();
if ( e.decision.couldBacktrack ) {
stats.numBacktrackOccurrences++;
e.decision.numBacktrackOccurrences++;
e.backtracks = true;
}
}
/** Successful or not, track how much lookahead synpreds use */
public void endBacktrack(int level, boolean successful) {
if (dump) System.out.println("exit backtrack "+level+": "+successful);
backtrackDepth--;
}
@Override
public void seek(int i) {
if (dump) System.out.println("seek "+i);
}
protected DecisionEvent currentDecision() {
return decisionStack.peek();
}
public void recognitionException(RecognitionException e) {
stats.numReportedErrors++;
}
public void semanticPredicate(boolean result, String predicate) {
stats.numSemanticPredicates++;
if ( inDecision() ) {
DecisionEvent d = currentDecision();
d.evalSemPred = true;
d.decision.numSemPredEvals++;
if (dump) System.out.println("eval "+predicate+" in "+d.decision.ruleName+"-"+
d.decision.decision);
}
}
public void terminate() {
for (DecisionEvent e : decisionEvents) {
//System.out.println("decision "+e.decision.decision+": k="+e.k);
e.decision.avgk += e.k;
stats.avgkPerDecisionEvent += e.k;
if ( e.backtracks ) { // doesn't count gated syn preds on DFA edges
stats.avgkPerBacktrackingDecisionEvent += e.k;
}
}
stats.averageDecisionPercentBacktracks = 0.0f;
for (DecisionDescriptor d : decisions.values()) {
stats.numDecisionsCovered++;
d.avgk /= (double)d.n;
if ( d.couldBacktrack ) {
stats.numDecisionsThatPotentiallyBacktrack++;
float percentBacktracks = d.numBacktrackOccurrences / (float)d.n;
//System.out.println("dec "+d.decision+" backtracks "+percentBacktracks*100+"%");
stats.averageDecisionPercentBacktracks += percentBacktracks;
}
// ignore rules that backtrack along gated DFA edges
if ( d.numBacktrackOccurrences > 0 ) {
stats.numDecisionsThatDoBacktrack++;
}
}
stats.averageDecisionPercentBacktracks /= stats.numDecisionsThatPotentiallyBacktrack;
stats.averageDecisionPercentBacktracks *= 100; // it's a percentage
stats.avgkPerDecisionEvent /= stats.numDecisionEvents;
stats.avgkPerBacktrackingDecisionEvent /= (double)stats.numBacktrackOccurrences;
System.err.println(toString());
System.err.println(getDecisionStatsDump());
// String stats = toNotifyString();
// try {
// Stats.writeReport(RUNTIME_STATS_FILENAME,stats);
// }
// catch (IOException ioe) {
// System.err.println(ioe);
// ioe.printStackTrace(System.err);
// }
}
public void setParser(DebugParser parser) {
this.parser = parser;
}
// R E P O R T I N G
public String toNotifyString() {
StringBuffer buf = new StringBuffer();
buf.append(Version);
buf.append('\t');
buf.append(parser.getClass().getName());
// buf.append('\t');
// buf.append(numRuleInvocations);
// buf.append('\t');
// buf.append(maxRuleInvocationDepth);
// buf.append('\t');
// buf.append(numFixedDecisions);
// buf.append('\t');
// buf.append(Stats.min(decisionMaxFixedLookaheads));
// buf.append('\t');
// buf.append(Stats.max(decisionMaxFixedLookaheads));
// buf.append('\t');
// buf.append(Stats.avg(decisionMaxFixedLookaheads));
// buf.append('\t');
// buf.append(Stats.stddev(decisionMaxFixedLookaheads));
// buf.append('\t');
// buf.append(numCyclicDecisions);
// buf.append('\t');
// buf.append(Stats.min(decisionMaxCyclicLookaheads));
// buf.append('\t');
// buf.append(Stats.max(decisionMaxCyclicLookaheads));
// buf.append('\t');
// buf.append(Stats.avg(decisionMaxCyclicLookaheads));
// buf.append('\t');
// buf.append(Stats.stddev(decisionMaxCyclicLookaheads));
// buf.append('\t');
// buf.append(numBacktrackDecisions);
// buf.append('\t');
// buf.append(Stats.min(toArray(decisionMaxSynPredLookaheads)));
// buf.append('\t');
// buf.append(Stats.max(toArray(decisionMaxSynPredLookaheads)));
// buf.append('\t');
// buf.append(Stats.avg(toArray(decisionMaxSynPredLookaheads)));
// buf.append('\t');
// buf.append(Stats.stddev(toArray(decisionMaxSynPredLookaheads)));
// buf.append('\t');
// buf.append(numSemanticPredicates);
// buf.append('\t');
// buf.append(parser.getTokenStream().size());
// buf.append('\t');
// buf.append(numHiddenTokens);
// buf.append('\t');
// buf.append(numCharsMatched);
// buf.append('\t');
// buf.append(numHiddenCharsMatched);
// buf.append('\t');
// buf.append(numberReportedErrors);
// buf.append('\t');
// buf.append(numMemoizationCacheHits);
// buf.append('\t');
// buf.append(numMemoizationCacheMisses);
// buf.append('\t');
// buf.append(numGuessingRuleInvocations);
// buf.append('\t');
// buf.append(numMemoizationCacheEntries);
return buf.toString();
}
public String toString() {
return toString(getReport());
}
public ProfileStats getReport() {
// TokenStream input = parser.getTokenStream();
// for (int i=0; i<input.size()&& lastRealTokenTouchedInDecision !=null&&i<= lastRealTokenTouchedInDecision.getTokenIndex(); i++) {
// Token t = input.get(i);
// if ( t.getChannel()!=Token.DEFAULT_CHANNEL ) {
// stats.numHiddenTokens++;
// stats.numHiddenCharsMatched += t.getText().length();
// }
// }
stats.Version = Version;
stats.name = parser.getClass().getName();
stats.numUniqueRulesInvoked = uniqueRules.size();
//stats.numCharsMatched = lastTokenConsumed.getStopIndex() + 1;
return stats;
}
public DoubleKeyMap getDecisionStats() {
return decisions;
}
public List getDecisionEvents() {
return decisionEvents;
}
public static String toString(ProfileStats stats) {
StringBuffer buf = new StringBuffer();
buf.append("ANTLR Runtime Report; Profile Version ");
buf.append(stats.Version);
buf.append(newline);
buf.append("parser name ");
buf.append(stats.name);
buf.append(newline);
buf.append("Number of rule invocations ");
buf.append(stats.numRuleInvocations);
buf.append(newline);
buf.append("Number of unique rules visited ");
buf.append(stats.numUniqueRulesInvoked);
buf.append(newline);
buf.append("Number of decision events ");
buf.append(stats.numDecisionEvents);
buf.append(newline);
buf.append("Overall average k per decision event ");
buf.append(stats.avgkPerDecisionEvent);
buf.append(newline);
buf.append("Number of backtracking occurrences (can be multiple per decision) ");
buf.append(stats.numBacktrackOccurrences);
buf.append(newline);
buf.append("Overall average k per decision event that backtracks ");
buf.append(stats.avgkPerBacktrackingDecisionEvent);
buf.append(newline);
buf.append("Number of rule invocations while backtracking ");
buf.append(stats.numGuessingRuleInvocations);
buf.append(newline);
buf.append("num decisions that potentially backtrack ");
buf.append(stats.numDecisionsThatPotentiallyBacktrack);
buf.append(newline);
buf.append("num decisions that do backtrack ");
buf.append(stats.numDecisionsThatDoBacktrack);
buf.append(newline);
buf.append("num decisions that potentially backtrack but don't ");
buf.append(stats.numDecisionsThatPotentiallyBacktrack - stats.numDecisionsThatDoBacktrack);
buf.append(newline);
buf.append("average % of time a potentially backtracking decision backtracks ");
buf.append(stats.averageDecisionPercentBacktracks);
buf.append(newline);
buf.append("num unique decisions covered ");
buf.append(stats.numDecisionsCovered);
buf.append(newline);
buf.append("max rule invocation nesting depth ");
buf.append(stats.maxRuleInvocationDepth);
buf.append(newline);
// buf.append("number of fixed lookahead decisions ");
// buf.append();
// buf.append('\n');
// buf.append("min lookahead used in a fixed lookahead decision ");
// buf.append();
// buf.append('\n');
// buf.append("max lookahead used in a fixed lookahead decision ");
// buf.append();
// buf.append('\n');
// buf.append("average lookahead depth used in fixed lookahead decisions ");
// buf.append();
// buf.append('\n');
// buf.append("standard deviation of depth used in fixed lookahead decisions ");
// buf.append();
// buf.append('\n');
// buf.append("number of arbitrary lookahead decisions ");
// buf.append();
// buf.append('\n');
// buf.append("min lookahead used in an arbitrary lookahead decision ");
// buf.append();
// buf.append('\n');
// buf.append("max lookahead used in an arbitrary lookahead decision ");
// buf.append();
// buf.append('\n');
// buf.append("average lookahead depth used in arbitrary lookahead decisions ");
// buf.append();
// buf.append('\n');
// buf.append("standard deviation of depth used in arbitrary lookahead decisions ");
// buf.append();
// buf.append('\n');
// buf.append("number of evaluated syntactic predicates ");
// buf.append();
// buf.append('\n');
// buf.append("min lookahead used in a syntactic predicate ");
// buf.append();
// buf.append('\n');
// buf.append("max lookahead used in a syntactic predicate ");
// buf.append();
// buf.append('\n');
// buf.append("average lookahead depth used in syntactic predicates ");
// buf.append();
// buf.append('\n');
// buf.append("standard deviation of depth used in syntactic predicates ");
// buf.append();
// buf.append('\n');
buf.append("rule memoization cache size ");
buf.append(stats.numMemoizationCacheEntries);
buf.append(newline);
buf.append("number of rule memoization cache hits ");
buf.append(stats.numMemoizationCacheHits);
buf.append(newline);
buf.append("number of rule memoization cache misses ");
buf.append(stats.numMemoizationCacheMisses);
buf.append(newline);
// buf.append("number of evaluated semantic predicates ");
// buf.append();
// buf.append(newline);
buf.append("number of tokens ");
buf.append(stats.numTokens);
buf.append(newline);
buf.append("number of hidden tokens ");
buf.append(stats.numHiddenTokens);
buf.append(newline);
buf.append("number of char ");
buf.append(stats.numCharsMatched);
buf.append(newline);
buf.append("number of hidden char ");
buf.append(stats.numHiddenCharsMatched);
buf.append(newline);
buf.append("number of syntax errors ");
buf.append(stats.numReportedErrors);
buf.append(newline);
return buf.toString();
}
public String getDecisionStatsDump() {
StringBuffer buf = new StringBuffer();
buf.append("location");
buf.append(DATA_SEP);
buf.append("n");
buf.append(DATA_SEP);
buf.append("avgk");
buf.append(DATA_SEP);
buf.append("maxk");
buf.append(DATA_SEP);
buf.append("synpred");
buf.append(DATA_SEP);
buf.append("sempred");
buf.append(DATA_SEP);
buf.append("canbacktrack");
buf.append("\n");
for (String fileName : decisions.keySet()) {
for (int d : decisions.keySet(fileName)) {
DecisionDescriptor s = decisions.get(fileName, d);
buf.append(s.decision);
buf.append("@");
buf.append(locationDescription(s.fileName,s.ruleName,s.line,s.pos)); // decision number
buf.append(DATA_SEP);
buf.append(s.n);
buf.append(DATA_SEP);
buf.append(String.format("%.2f",s.avgk));
buf.append(DATA_SEP);
buf.append(s.maxk);
buf.append(DATA_SEP);
buf.append(s.numBacktrackOccurrences);
buf.append(DATA_SEP);
buf.append(s.numSemPredEvals);
buf.append(DATA_SEP);
buf.append(s.couldBacktrack ?"1":"0");
buf.append(newline);
}
}
return buf.toString();
}
protected int[] trim(int[] X, int n) {
if ( n<X.length ) {
int[] trimmed = new int[n];
System.arraycopy(X,0,trimmed,0,n);
X = trimmed;
}
return X;
}
protected int[] toArray(List a) {
int[] x = new int[a.size()];
for (int i = 0; i < a.size(); i++) {
Integer I = (Integer) a.get(i);
x[i] = I.intValue();
}
return x;
}
/** Get num hidden tokens between i..j inclusive */
public int getNumberOfHiddenTokens(int i, int j) {
int n = 0;
TokenStream input = parser.getTokenStream();
for (int ti = i; ti<input.size() && ti <= j; ti++) {
Token t = input.get(ti);
if ( t.getChannel()!=Token.DEFAULT_CHANNEL ) {
n++;
}
}
return n;
}
protected String locationDescription() {
return locationDescription(
currentGrammarFileName.peek(),
currentRuleName.peek(),
currentLine.peek(),
currentPos.peek());
}
protected String locationDescription(String file, String rule, int line, int pos) {
return file+":"+line+":"+pos+"(" + rule + ")";
}
}

View File

@ -1,18 +1,19 @@
/*
[The "BSD license"]
Copyright (c) 2005-2009 Terence Parr
Copyright (c) 2011 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
@ -25,25 +26,45 @@
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.antlr.v4.runtime.tree;
import org.antlr.v4.runtime.RuleContext;
import org.antlr.v4.runtime.Token;
import org.antlr.v4.runtime.*;
import java.util.ArrayList;
import java.util.List;
/** A record of the rules used to match a token sequence. The tokens
* end up as the leaves of this tree and rule nodes are the interior nodes.
/** An interface to access the tree of RuleContext objects created
* during a parse that makes the data structure look like a simple parse tree.
* This note represents both internal nodes, rule invocations,
* and leaf nodes, token matches.
*
* Unlike the common AST stuff in the runtime library, there is no such thing
* as a nil node. The payload is either a token or a context object.
*/
public abstract class ParseTree {
public static class TokenNode extends ParseTree {
public interface ParseTree {
public interface RuleNode extends ParseTree {
RuleContext getRuleContext();
}
public interface TokenNode extends ParseTree {
Token getToken();
}
public static class TokenNodeImpl implements TokenNode {
public Token token;
public TokenNode(Token token) {
public ParseTree parent;
/** Which ATN node matched this token? */
public int s;
public TokenNodeImpl(Token token) {
this.token = token;
}
public ParseTree getChild(int i) {return null;}
public Token getToken() {return token;}
public ParseTree getParent() { return parent; }
public Object getPayload() { return token; }
public int getChildCount() { return 0; }
@Override
public String toString() {
if ( token.getType() == Token.EOF ) return "<EOF>";
@ -51,67 +72,21 @@ public abstract class ParseTree {
}
}
public static class RuleNode extends ParseTree {
public RuleContext ctx;
public String ruleName;
public RuleNode(String ruleName, RuleContext ctx) {
this.ruleName = ruleName;
this.ctx = ctx;
}
public String toString() { return ruleName; }
}
protected ParseTree parent;
protected List<ParseTree> children;
protected List hiddenTokens;
/** Add t as child of this node. t must not be nil node. */
public void addChild(ParseTree t) {
if ( children==null ) children = new ArrayList<ParseTree>();
children.add(t);
}
public ParseTree getChild(int i) {
if ( children==null || i>=children.size() ) {
return null;
}
return children.get(i);
}
public ParseTree getParent() { return parent; }
public void setParent(ParseTree t) { parent = t; }
public String toStringWithHiddenTokens() {
StringBuffer buf = new StringBuffer();
if ( hiddenTokens!=null ) {
for (int i = 0; i < hiddenTokens.size(); i++) {
Token hidden = (Token) hiddenTokens.get(i);
buf.append(hidden.getText());
}
}
String nodeText = this.toString();
if ( !nodeText.equals("<EOF>") ) buf.append(nodeText);
return buf.toString();
}
/** Print out the leaves of this tree, which means printing original
* input back out.
/** The parent of this node. If the return value is null, then this
* node is the root of the parse tree.
*/
public String toInputString() {
StringBuffer buf = new StringBuffer();
_toStringLeaves(buf);
return buf.toString();
}
ParseTree getParent();
protected void _toStringLeaves(StringBuffer buf) {
if ( children==null ) { // leaf node token?
buf.append(this.toStringWithHiddenTokens());
return;
}
for (int i = 0; children!=null && i < children.size(); i++) {
ParseTree t = children.get(i);
t._toStringLeaves(buf);
}
}
/** This can be a Token representing a leaf node or a RuleContext
* object representing a rule invocation.
*/
Object getPayload();
/** If there are children, get the ith value indexed from 0. */
ParseTree getChild(int i);
/** How many children are there? If there is none, then this
* node represents a token match leaf node.
*/
int getChildCount();
}

View File

@ -311,13 +311,11 @@ cases(ttypes) ::= <<
>>
InvokeRule(r, argExprsChunks) ::= <<
_localctx.s = <r.stateNumber>;
<if(r.labels)><r.labels:{l | <labelref(l)> = }><endif><r.name>(<argExprsChunks:{e| <e>}>);
move(<r.stateNumber>); <if(r.labels)><r.labels:{l | <labelref(l)> = }><endif><r.name>(<argExprsChunks:{e| <e>}>);
>>
MatchToken(m) ::= <<
_localctx.s = <m.stateNumber>;
<if(m.labels)><m.labels:{l | <labelref(l)> = }>(Token)<endif>match(<m.name>);
move(<m.stateNumber>); <if(m.labels)><m.labels:{l | <labelref(l)> = }>(Token)<endif>match(<m.name>);
>>
MatchSet(m, expr, capture) ::= "<CommonSetStuff(m, expr, capture, false)>"
@ -325,7 +323,7 @@ MatchSet(m, expr, capture) ::= "<CommonSetStuff(m, expr, capture, false)>"
MatchNotSet(m, expr, capture) ::= "<CommonSetStuff(m, expr, capture, true)>"
CommonSetStuff(m, expr, capture, invert) ::= <<
_localctx.s = <m.stateNumber>;
move(<m.stateNumber>);
<if(m.labels)><m.labels:{l | <labelref(l)> = }><endif>input.LT(1);
<capture>
if ( <if(!invert)>!<endif>(<expr>) ) throw new MismatchedSetException(this, input);
@ -333,7 +331,7 @@ input.consume();
>>
Wildcard(w) ::= <<
_localctx.s = <w.stateNumber>;
move(<w.stateNumber>);
<if(w.labels)><w.labels:{l | <labelref(l)> = }><endif>input.LT(1); input.consume();
>>