PaddleOCR/ppocr/data/reader_main.py

78 lines
2.2 KiB
Python
Raw Permalink Normal View History

2020-05-10 16:26:57 +08:00
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import random
import numpy as np
import paddle
from ppocr.utils.utility import create_module
from copy import deepcopy
from .rec.img_tools import process_image
import cv2
import sys
import signal
# handle terminate reader process, do not print stack frame
def _reader_quit(signum, frame):
print("Reader process exit.")
sys.exit()
def _term_group(sig_num, frame):
print('pid {} terminated, terminate group '
'{}...'.format(os.getpid(), os.getpgrp()))
os.killpg(os.getpgid(os.getpid()), signal.SIGKILL)
signal.signal(signal.SIGTERM, _reader_quit)
signal.signal(signal.SIGINT, _term_group)
def reader_main(config=None, mode=None):
"""Create a reader for trainning
Args:
settings: arguments
Returns:
train reader
"""
assert mode in ["train", "eval", "test"],\
"Nonsupport mode:{}".format(mode)
global_params = config['Global']
if mode == "train":
params = deepcopy(config['TrainReader'])
elif mode == "eval":
params = deepcopy(config['EvalReader'])
else:
params = deepcopy(config['TestReader'])
params['mode'] = mode
params.update(global_params)
reader_function = params['reader_function']
function = create_module(reader_function)(params)
if mode == "train":
2020-05-25 17:10:04 +08:00
if sys.platform == "win32":
return function(0)
2020-05-10 16:26:57 +08:00
readers = []
num_workers = params['num_workers']
for process_id in range(num_workers):
readers.append(function(process_id))
return paddle.reader.multiprocess_reader(readers, False)
else:
return function(mode)