PaddleOCR/paddleocr.py

341 lines
13 KiB
Python
Raw Permalink Normal View History

2020-08-22 19:42:14 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))
import cv2
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm
from tools.infer import predict_system
2020-12-07 19:10:19 +08:00
from ppocr.utils.logging import get_logger
2020-08-22 19:42:14 +08:00
2020-12-07 19:10:19 +08:00
logger = get_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
2020-08-22 19:42:14 +08:00
__all__ = ['PaddleOCR']
2020-12-07 19:10:19 +08:00
model_urls = {
'det':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar',
2020-12-07 19:10:19 +08:00
'rec': {
'ch': {
'url':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar',
2020-12-07 19:10:19 +08:00
'dict_path': './ppocr/utils/ppocr_keys_v1.txt'
},
'en': {
'url':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar',
'dict_path': './ppocr/utils/dict/en_dict.txt'
2020-12-07 19:10:19 +08:00
},
'french': {
'url':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar',
2020-12-07 19:10:19 +08:00
'dict_path': './ppocr/utils/dict/french_dict.txt'
},
'german': {
'url':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar',
2020-12-07 19:10:19 +08:00
'dict_path': './ppocr/utils/dict/german_dict.txt'
},
'korean': {
'url':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar',
2020-12-07 19:10:19 +08:00
'dict_path': './ppocr/utils/dict/korean_dict.txt'
},
'japan': {
'url':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar',
2020-12-07 19:10:19 +08:00
'dict_path': './ppocr/utils/dict/japan_dict.txt'
}
},
'cls':
2020-12-11 22:06:42 +08:00
'https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar'
2020-08-22 19:42:14 +08:00
}
SUPPORT_DET_MODEL = ['DB']
2020-12-11 22:06:42 +08:00
VERSION = 2.0
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
2020-08-22 19:42:14 +08:00
def download_with_progressbar(url, save_path):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(save_path, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
2020-12-07 19:10:19 +08:00
if total_size_in_bytes == 0 or progress_bar.n != total_size_in_bytes:
logger.error("Something went wrong while downloading models")
2020-08-22 19:42:14 +08:00
sys.exit(0)
def maybe_download(model_storage_directory, url):
2020-08-22 19:42:14 +08:00
# using custom model
2020-12-11 22:06:42 +08:00
tar_file_name_list = [
'inference.pdiparams', 'inference.pdiparams.info', 'inference.pdmodel'
]
if not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdiparams')
) or not os.path.exists(
os.path.join(model_storage_directory, 'inference.pdmodel')):
tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
print('download {} to {}'.format(url, tmp_path))
os.makedirs(model_storage_directory, exist_ok=True)
download_with_progressbar(url, tmp_path)
with tarfile.open(tmp_path, 'r') as tarObj:
for member in tarObj.getmembers():
2020-12-11 22:06:42 +08:00
filename = None
for tar_file_name in tar_file_name_list:
if tar_file_name in member.name:
filename = tar_file_name
if filename is None:
continue
file = tarObj.extractfile(member)
with open(
os.path.join(model_storage_directory, filename),
'wb') as f:
f.write(file.read())
os.remove(tmp_path)
2020-08-22 19:42:14 +08:00
2020-12-07 19:10:19 +08:00
def parse_args(mMain=True, add_help=True):
2020-08-22 19:42:14 +08:00
import argparse
def str2bool(v):
return v.lower() in ("true", "t", "1")
2020-12-07 19:10:19 +08:00
if mMain:
parser = argparse.ArgumentParser(add_help=add_help)
# params for prediction engine
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
# params for text detector
parser.add_argument("--image_dir", type=str)
parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_dir", type=str, default=None)
parser.add_argument("--det_limit_side_len", type=float, default=960)
parser.add_argument("--det_limit_type", type=str, default='max')
# DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
# EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
# params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument("--rec_model_dir", type=str, default=None)
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument("--rec_batch_num", type=int, default=30)
parser.add_argument("--max_text_length", type=int, default=25)
parser.add_argument("--rec_char_dict_path", type=str, default=None)
parser.add_argument("--use_space_char", type=bool, default=True)
parser.add_argument("--drop_score", type=float, default=0.5)
# params for text classifier
parser.add_argument("--cls_model_dir", type=str, default=None)
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
parser.add_argument("--label_list", type=list, default=['0', '180'])
parser.add_argument("--cls_batch_num", type=int, default=30)
parser.add_argument("--cls_thresh", type=float, default=0.9)
parser.add_argument("--enable_mkldnn", type=bool, default=False)
parser.add_argument("--use_zero_copy_run", type=bool, default=False)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
parser.add_argument("--lang", type=str, default='ch')
parser.add_argument("--det", type=str2bool, default=True)
parser.add_argument("--rec", type=str2bool, default=True)
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
return parser.parse_args()
else:
2020-12-11 22:06:42 +08:00
return argparse.Namespace(
use_gpu=True,
ir_optim=True,
use_tensorrt=False,
gpu_mem=8000,
image_dir='',
det_algorithm='DB',
det_model_dir=None,
det_limit_side_len=960,
det_limit_type='max',
det_db_thresh=0.3,
det_db_box_thresh=0.5,
det_db_unclip_ratio=2.0,
det_east_score_thresh=0.8,
det_east_cover_thresh=0.1,
det_east_nms_thresh=0.2,
rec_algorithm='CRNN',
rec_model_dir=None,
rec_image_shape="3, 32, 320",
rec_char_type='ch',
rec_batch_num=30,
max_text_length=25,
rec_char_dict_path=None,
use_space_char=True,
drop_score=0.5,
cls_model_dir=None,
cls_image_shape="3, 48, 192",
label_list=['0', '180'],
cls_batch_num=30,
cls_thresh=0.9,
enable_mkldnn=False,
use_zero_copy_run=False,
use_pdserving=False,
lang='ch',
det=True,
rec=True,
use_angle_cls=False)
2020-08-22 19:42:14 +08:00
class PaddleOCR(predict_system.TextSystem):
def __init__(self, **kwargs):
2020-08-22 19:42:14 +08:00
"""
paddleocr package
args:
**kwargs: other params show in paddleocr --help
"""
2020-12-07 19:10:19 +08:00
postprocess_params = parse_args(mMain=False, add_help=False)
postprocess_params.__dict__.update(**kwargs)
2020-12-07 19:10:19 +08:00
self.use_angle_cls = postprocess_params.use_angle_cls
lang = postprocess_params.lang
assert lang in model_urls[
'rec'], 'param lang must in {}, but got {}'.format(
2020-12-11 22:06:42 +08:00
model_urls['rec'].keys(), lang)
2020-12-07 19:10:19 +08:00
if postprocess_params.rec_char_dict_path is None:
postprocess_params.rec_char_dict_path = model_urls['rec'][lang][
'dict_path']
2020-08-22 19:42:14 +08:00
# init model dir
if postprocess_params.det_model_dir is None:
2020-12-11 22:06:42 +08:00
postprocess_params.det_model_dir = os.path.join(
BASE_DIR, '{}/det'.format(VERSION))
if postprocess_params.rec_model_dir is None:
2020-12-07 19:10:19 +08:00
postprocess_params.rec_model_dir = os.path.join(
2020-12-11 22:06:42 +08:00
BASE_DIR, '{}/rec/{}'.format(VERSION, lang))
2020-12-07 19:10:19 +08:00
if postprocess_params.cls_model_dir is None:
2020-12-11 22:06:42 +08:00
postprocess_params.cls_model_dir = os.path.join(
BASE_DIR, '{}/cls'.format(VERSION))
print(postprocess_params)
2020-08-22 19:42:14 +08:00
# download model
2020-12-07 19:10:19 +08:00
maybe_download(postprocess_params.det_model_dir, model_urls['det'])
maybe_download(postprocess_params.rec_model_dir,
model_urls['rec'][lang]['url'])
maybe_download(postprocess_params.cls_model_dir, model_urls['cls'])
2020-08-22 19:42:14 +08:00
if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
sys.exit(0)
if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
2020-12-18 10:04:50 +08:00
postprocess_params.rec_char_dict_path = str(
Path(__file__).parent / postprocess_params.rec_char_dict_path)
2020-08-22 19:42:14 +08:00
# init det_model and rec_model
super().__init__(postprocess_params)
2020-12-07 19:10:19 +08:00
def ocr(self, img, det=True, rec=True, cls=False):
2020-08-22 19:42:14 +08:00
"""
ocr with paddleocr
args
img: img for ocr, support ndarray, img_path and list or ndarray
det: use text detection or not, if false, only rec will be exec. default is True
rec: use text recognition or not, if false, only det will be exec. default is True
"""
assert isinstance(img, (np.ndarray, list, str))
2020-12-07 19:10:19 +08:00
if isinstance(img, list) and det == True:
logger.error('When input a list of images, det must be false')
exit(0)
self.use_angle_cls = cls
2020-08-22 19:42:14 +08:00
if isinstance(img, str):
2020-12-07 19:10:19 +08:00
# download net image
if img.startswith('http'):
download_with_progressbar(img, 'tmp.jpg')
img = 'tmp.jpg'
2020-08-22 19:42:14 +08:00
image_file = img
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None
2020-12-07 19:10:19 +08:00
if isinstance(img, np.ndarray) and len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
2020-08-22 19:42:14 +08:00
if det and rec:
dt_boxes, rec_res = self.__call__(img)
return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
elif det and not rec:
dt_boxes, elapse = self.text_detector(img)
if dt_boxes is None:
return None
return [box.tolist() for box in dt_boxes]
else:
if not isinstance(img, list):
img = [img]
2020-12-07 19:10:19 +08:00
if self.use_angle_cls:
img, cls_res, elapse = self.text_classifier(img)
if not rec:
return cls_res
2020-08-22 19:42:14 +08:00
rec_res, elapse = self.text_recognizer(img)
return rec_res
def main():
2020-12-07 19:10:19 +08:00
# for cmd
args = parse_args(mMain=True)
image_dir = args.image_dir
if image_dir.startswith('http'):
download_with_progressbar(image_dir, 'tmp.jpg')
image_file_list = ['tmp.jpg']
else:
image_file_list = get_image_file_list(args.image_dir)
if len(image_file_list) == 0:
logger.error('no images find in {}'.format(args.image_dir))
return
2020-12-07 19:10:19 +08:00
ocr_engine = PaddleOCR(**(args.__dict__))
for img_path in image_file_list:
2020-12-07 19:10:19 +08:00
logger.info('{}{}{}'.format('*' * 10, img_path, '*' * 10))
result = ocr_engine.ocr(img_path,
det=args.det,
rec=args.rec,
cls=args.use_angle_cls)
if result is not None:
for line in result:
logger.info(line)