PaddleOCR/ppocr/losses/det_db_loss.py

73 lines
2.7 KiB
Python
Raw Permalink Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2020-05-10 16:26:57 +08:00
#
2020-10-13 17:13:33 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-05-10 16:26:57 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-10-13 17:13:33 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-05-10 16:26:57 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-10-13 17:13:33 +08:00
from paddle import nn
2020-05-10 16:26:57 +08:00
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
2020-10-13 17:13:33 +08:00
class DBLoss(nn.Layer):
2020-05-10 16:26:57 +08:00
"""
Differentiable Binarization (DB) Loss Function
args:
param (dict): the super paramter for DB Loss
"""
2020-10-13 17:13:33 +08:00
def __init__(self,
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
**kwargs):
2020-05-10 16:26:57 +08:00
super(DBLoss, self).__init__()
2020-10-13 17:13:33 +08:00
self.alpha = alpha
self.beta = beta
self.dice_loss = DiceLoss(eps=eps)
self.l1_loss = MaskL1Loss(eps=eps)
self.bce_loss = BalanceLoss(
balance_loss=balance_loss,
main_loss_type=main_loss_type,
negative_ratio=ohem_ratio)
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
def forward(self, predicts, labels):
2020-12-16 13:06:48 +08:00
predict_maps = predicts['maps']
2020-10-13 17:13:33 +08:00
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
1:]
2020-12-16 13:06:48 +08:00
shrink_maps = predict_maps[:, 0, :, :]
threshold_maps = predict_maps[:, 1, :, :]
binary_maps = predict_maps[:, 2, :, :]
2020-05-10 16:26:57 +08:00
2020-10-13 17:13:33 +08:00
loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
label_shrink_mask)
loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
label_threshold_mask)
loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
label_shrink_mask)
2020-05-10 16:26:57 +08:00
loss_shrink_maps = self.alpha * loss_shrink_maps
loss_threshold_maps = self.beta * loss_threshold_maps
2020-10-13 17:13:33 +08:00
loss_all = loss_shrink_maps + loss_threshold_maps \
+ loss_binary_maps
losses = {'loss': loss_all, \
"loss_shrink_maps": loss_shrink_maps, \
"loss_threshold_maps": loss_threshold_maps, \
"loss_binary_maps": loss_binary_maps}
2020-05-10 16:26:57 +08:00
return losses