PaddleOCR/ppocr/modeling/architectures/distillation_model.py

61 lines
2.3 KiB
Python
Raw Permalink Normal View History

2021-06-02 16:31:57 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
from ppocr.modeling.transforms import build_transform
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head
from .base_model import BaseModel
2021-07-07 09:54:03 +08:00
from ppocr.utils.save_load import init_model, load_pretrained_params
2021-06-02 16:31:57 +08:00
__all__ = ['DistillationModel']
class DistillationModel(nn.Layer):
def __init__(self, config):
"""
the module for OCR distillation.
args:
config (dict): the super parameters for module.
"""
super().__init__()
self.model_list = []
self.model_name_list = []
2021-06-02 16:31:57 +08:00
for key in config["Models"]:
model_config = config["Models"][key]
2021-06-03 13:30:43 +08:00
freeze_params = False
pretrained = None
if "freeze_params" in model_config:
freeze_params = model_config.pop("freeze_params")
if "pretrained" in model_config:
pretrained = model_config.pop("pretrained")
2021-06-02 16:31:57 +08:00
model = BaseModel(model_config)
2021-06-03 13:30:43 +08:00
if pretrained is not None:
2021-07-27 10:57:53 +08:00
load_pretrained_params(model, pretrained)
2021-06-03 13:30:43 +08:00
if freeze_params:
2021-06-02 16:31:57 +08:00
for param in model.parameters():
param.trainable = False
self.model_list.append(self.add_sublayer(key, model))
self.model_name_list.append(key)
2021-06-02 16:31:57 +08:00
def forward(self, x):
result_dict = dict()
for idx, model_name in enumerate(self.model_name_list):
result_dict[model_name] = self.model_list[idx](x)
2021-06-02 16:31:57 +08:00
return result_dict