PaddleOCR/tools/export_model.py

124 lines
4.8 KiB
Python
Raw Permalink Normal View History

2020-11-05 15:13:36 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, "..")))
2020-11-05 15:13:36 +08:00
import argparse
import paddle
from paddle.jit import to_static
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
2021-09-24 11:06:07 +08:00
from ppocr.utils.save_load import load_dygraph_params
from ppocr.utils.logging import get_logger
2020-12-11 18:48:23 +08:00
from tools.program import load_config, merge_config, ArgsParser
2020-11-05 15:13:36 +08:00
def export_single_model(model, arch_config, save_path, logger):
if arch_config["algorithm"] == "SRN":
max_text_length = arch_config["Head"]["max_text_length"]
2020-12-30 16:15:49 +08:00
other_shape = [
2020-12-09 19:56:37 +08:00
paddle.static.InputSpec(
shape=[None, 1, 64, 256], dtype="float32"), [
2020-12-30 16:15:49 +08:00
paddle.static.InputSpec(
shape=[None, 256, 1],
dtype="int64"), paddle.static.InputSpec(
2021-04-28 13:36:16 +08:00
shape=[None, max_text_length, 1], dtype="int64"),
2020-12-30 16:15:49 +08:00
paddle.static.InputSpec(
2021-04-28 13:36:16 +08:00
shape=[None, 8, max_text_length, max_text_length],
dtype="int64"), paddle.static.InputSpec(
shape=[None, 8, max_text_length, max_text_length],
dtype="int64")
2020-12-30 16:15:49 +08:00
]
]
model = to_static(model, input_spec=other_shape)
else:
infer_shape = [3, -1, -1]
if arch_config["model_type"] == "rec":
infer_shape = [3, 32, -1] # for rec model, H must be 32
if "Transform" in arch_config and arch_config[
"Transform"] is not None and arch_config["Transform"][
"name"] == "TPS":
logger.info(
"When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
)
infer_shape[-1] = 100
2021-09-13 21:10:10 +08:00
if arch_config["algorithm"] == "NRTR":
infer_shape = [1, 32, 100]
2021-06-21 20:20:25 +08:00
elif arch_config["model_type"] == "table":
infer_shape = [3, 488, 488]
2020-12-30 16:15:49 +08:00
model = to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None] + infer_shape, dtype="float32")
2020-12-30 16:15:49 +08:00
])
paddle.jit.save(model, save_path)
logger.info("inference model is saved to {}".format(save_path))
return
def main():
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
logger = get_logger()
# build post process
post_process_class = build_post_process(config["PostProcess"],
config["Global"])
# build model
# for rec algorithm
if hasattr(post_process_class, "character"):
char_num = len(getattr(post_process_class, "character"))
if config["Architecture"]["algorithm"] in ["Distillation",
]: # distillation model
for key in config["Architecture"]["Models"]:
config["Architecture"]["Models"][key]["Head"][
"out_channels"] = char_num
# just one final tensor needs to to exported for inference
config["Architecture"]["Models"][key][
"return_all_feats"] = False
else: # base rec model
config["Architecture"]["Head"]["out_channels"] = char_num
model = build_model(config["Architecture"])
2021-09-24 11:06:07 +08:00
_ = load_dygraph_params(config, model, logger, None)
model.eval()
save_path = config["Global"]["save_inference_dir"]
arch_config = config["Architecture"]
if arch_config["algorithm"] in ["Distillation", ]: # distillation model
archs = list(arch_config["Models"].values())
for idx, name in enumerate(model.model_name_list):
sub_model_save_path = os.path.join(save_path, name, "inference")
export_single_model(model.model_list[idx], archs[idx],
sub_model_save_path, logger)
else:
save_path = os.path.join(save_path, "inference")
export_single_model(model, arch_config, save_path, logger)
2020-11-05 15:13:36 +08:00
if __name__ == "__main__":
main()