36 lines
1.2 KiB
Python
36 lines
1.2 KiB
Python
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from paddle import nn
|
||
|
|
||
|
|
||
|
class PSEHead(nn.Layer):
|
||
|
def __init__(self,
|
||
|
in_channels,
|
||
|
hidden_dim=256,
|
||
|
out_channels=7,
|
||
|
**kwargs):
|
||
|
super(PSEHead, self).__init__()
|
||
|
self.conv1 = nn.Conv2D(in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
|
||
|
self.bn1 = nn.BatchNorm2D(hidden_dim)
|
||
|
self.relu1 = nn.ReLU()
|
||
|
|
||
|
self.conv2 = nn.Conv2D(hidden_dim, out_channels, kernel_size=1, stride=1, padding=0)
|
||
|
|
||
|
|
||
|
def forward(self, x, **kwargs):
|
||
|
out = self.conv1(x)
|
||
|
out = self.relu1(self.bn1(out))
|
||
|
out = self.conv2(out)
|
||
|
return {'maps': out}
|