PaddleOCR/tools/infer/predict_cls.py

153 lines
5.8 KiB
Python
Raw Normal View History

2020-11-17 12:54:24 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import cv2
import copy
import numpy as np
import math
import time
2020-12-02 15:55:28 +08:00
import traceback
2020-11-17 12:54:24 +08:00
import paddle.fluid as fluid
import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
2020-11-17 17:28:28 +08:00
logger = get_logger()
2020-11-17 12:54:24 +08:00
class TextClassifier(object):
def __init__(self, args):
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.cls_batch_num
2020-11-17 12:54:24 +08:00
self.cls_thresh = args.cls_thresh
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = {
'name': 'ClsPostProcess',
"label_list": args.label_list,
}
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors = \
utility.create_predictor(args, 'cls', logger)
def resize_norm_img(self, img):
imgC, imgH, imgW = self.cls_image_shape
h = img.shape[0]
w = img.shape[1]
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
if self.cls_image_shape[0] == 1:
resized_image = resized_image / 255
resized_image = resized_image[np.newaxis, :]
else:
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
padding_im[:, :, 0:resized_w] = resized_image
return padding_im
def __call__(self, img_list):
img_list = copy.deepcopy(img_list)
img_num = len(img_list)
# Calculate the aspect ratio of all text bars
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the cls process
indices = np.argsort(np.array(width_list))
cls_res = [['', 0.0]] * img_num
batch_num = self.cls_batch_num
elapse = 0
2020-11-17 12:54:24 +08:00
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]])
norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
prob_out = self.output_tensors[0].copy_to_cpu()
2020-12-02 15:55:28 +08:00
cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime
2020-12-02 15:55:28 +08:00
for rno in range(len(cls_result)):
label, score = cls_result[rno]
2020-11-17 12:54:24 +08:00
cls_res[indices[beg_img_no + rno]] = [label, score]
if '180' in label and score > self.cls_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate(
img_list[indices[beg_img_no + rno]], 1)
return img_list, cls_res, elapse
2020-11-17 12:54:24 +08:00
def main(args):
image_file_list = get_image_file_list(args.image_dir)
text_classifier = TextClassifier(args)
valid_image_file_list = []
img_list = []
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
valid_image_file_list.append(image_file)
img_list.append(img)
try:
2020-11-30 16:54:18 +08:00
img_list, cls_res, predict_time = text_classifier(img_list)
2020-12-02 15:55:28 +08:00
except:
logger.info(traceback.format_exc())
2020-11-17 12:54:24 +08:00
logger.info(
"ERROR!!!! \n"
"Please read the FAQhttps://github.com/PaddlePaddle/PaddleOCR#faq \n"
"If your model has tps module: "
"TPS does not support variable shape.\n"
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
2020-12-02 15:55:28 +08:00
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
2020-11-30 16:54:18 +08:00
ino]))
2020-12-02 15:55:28 +08:00
logger.info("Total predict time for {} images, cost: {:.3f}".format(
2020-11-30 16:54:18 +08:00
len(img_list), predict_time))
2020-11-17 12:54:24 +08:00
2020-12-02 15:55:28 +08:00
if __name__ == "__main__":
main(utility.parse_args())