PaddleOCR/test/infer.sh

145 lines
7.6 KiB
Bash
Raw Normal View History

2021-06-08 20:38:30 +08:00
#!/bin/bash
dataline=$(cat ${FILENAME})
# parser params
IFS=$'\n'
lines=(${dataline})
function func_parser(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
IFS=$'\n'
# The training params
train_model_list=$(func_parser "${lines[0]}")
gpu_list=$(func_parser "${lines[1]}")
auto_cast_list=$(func_parser "${lines[2]}")
slim_trainer_list=$(func_parser "${lines[3]}")
python=$(func_parser "${lines[4]}")
# inference params
inference=$(func_parser "${lines[5]}")
devices=$(func_parser "${lines[6]}")
use_mkldnn_list=$(func_parser "${lines[7]}")
cpu_threads_list=$(func_parser "${lines[8]}")
rec_batch_size_list=$(func_parser "${lines[9]}")
gpu_trt_list=$(func_parser "${lines[10]}")
gpu_precision_list=$(func_parser "${lines[11]}")
2021-06-08 21:22:54 +08:00
function status_check(){
2021-06-08 21:24:43 +08:00
last_status=$1 # the exit code
2021-06-08 21:22:54 +08:00
run_model=$2
run_command=$3
save_log=$4
echo ${case3}
if [ $last_status -eq 0 ]; then
echo -e "\033[33m $run_model successfully with command - ${run_command}! \033[0m" | tee -a ${save_log}
else
echo -e "\033[33m $case failed with command - ${run_command}! \033[0m" | tee -a ${save_log}
fi
}
2021-06-08 20:38:30 +08:00
for train_model in ${train_model_list[*]}; do
if [ ${train_model} = "det" ];then
model_name="det"
yml_file="configs/det/det_mv3_db.yml"
img_dir=""
elif [ ${train_model} = "rec" ];then
model_name="rec"
yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
img_dir=""
fi
# eval
for slim_trainer in ${slim_trainer_list[*]}; do
if [ ${slim_trainer} = "norm" ]; then
2021-06-08 21:22:54 +08:00
if [ ${model_name} = "det" ]; then
2021-06-08 20:38:30 +08:00
eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
else
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar
fi
elif [ ${slim_trainer} = "quant" ]; then
2021-06-08 21:22:54 +08:00
if [ ${model_name} = "det" ]; then
2021-06-08 20:38:30 +08:00
eval_model_name="ch_ppocr_mobile_v2.0_det_quant_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_quant_train.tar
else
eval_model_name="ch_ppocr_mobile_v2.0_rec_quant_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_quant_train.tar
fi
elif [ ${slim_trainer} = "distill" ]; then
2021-06-08 21:22:54 +08:00
if [ ${model_name} = "det" ]; then
2021-06-08 20:38:30 +08:00
eval_model_name="ch_ppocr_mobile_v2.0_det_distill_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_distill_train.tar
else
eval_model_name="ch_ppocr_mobile_v2.0_rec_distill_infer"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_distill_train.tar
fi
elif [ ${slim_trainer} = "prune" ]; then
2021-06-08 21:22:54 +08:00
if [ ${model_name} = "det" ]; then
2021-06-08 20:38:30 +08:00
eval_model_name="ch_ppocr_mobile_v2.0_det_prune_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_train.tar
else
eval_model_name="ch_ppocr_mobile_v2.0_rec_prune_train"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_rec_prune_train.tar
fi
fi
2021-06-08 21:22:54 +08:00
save_log_path="${log_path}/${eval_model_name}"
command="${python} tools/eval.py -c ${yml_file} -o Global.pretrained_model=${eval_model_name} Global.save_model_dir=${save_log_path}"
${python} tools/eval.py -c ${yml_file} -o Global.pretrained_model=${eval_model_name} Global.save_model_dir=${save_log_path}
status_check $? "${trainer}" "${command}" "${save_log_path}/train.log"
command="${python} tools/export_model.py -c ${yml_file} -o Global.pretrained_model=${eval_model_name} Global.save_inference_dir=${log_path}/${eval_model_name}_infer Global.save_model_dir=${save_log_path}"
${python} tools/export_model.py -c ${yml_file} -o Global.pretrained_model=${eval_model_name} Global.save_inference_dir=${log_path}/${eval_model_name}_infer Global.save_model_dir=${save_log_path}
status_check $? "${trainer}" "${command}" "${save_log_path}/train.log"
2021-06-08 20:38:30 +08:00
if [ $? -eq 0 ]; then
echo -e "\033[33m training of $model_name successfully!\033[0m" | tee -a ${save_log}/train.log
else
cat ${save_log}/train.log
echo -e "\033[33m training of $model_name failed!\033[0m" | tee -a ${save_log}/train.log
fi
if [ "${model_name}" = "det" ]; then
export rec_batch_size_list=( "1" )
inference="tools/infer/predict_det.py"
det_model_dir=${log_path}/${eval_model_name}_infer
rec_model_dir=""
elif [ "${model_name}" = "rec" ]; then
inference="tools/infer/predict_rec.py"
rec_model_dir=${log_path}/${eval_model_name}_infer
det_model_dir=""
fi
# inference
for device in ${devices[*]}; do
if [ ${device} = "cpu" ]; then
for use_mkldnn in ${use_mkldnn_list[*]}; do
for threads in ${cpu_threads_list[*]}; do
for rec_batch_size in ${rec_batch_size_list[*]}; do
2021-06-08 21:22:54 +08:00
save_log_path="${log_path}/${model_name}_${slim_trainer}_cpu_usemkldnn_${use_mkldnn}_cputhreads_${threads}_recbatchnum_${rec_batch_size}_infer.log"
command="${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}"
${python} ${inference} --enable_mkldnn=${use_mkldnn} --use_gpu=False --cpu_threads=${threads} --benchmark=True --det_model_dir=${det_model_dir} --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}
status_check $? "${trainer}" "${command}" "${save_log_path}"
2021-06-08 20:38:30 +08:00
done
done
done
else
for use_trt in ${gpu_trt_list[*]}; do
for precision in ${gpu_precision_list[*]}; do
if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
continue
fi
for rec_batch_size in ${rec_batch_size_list[*]}; do
2021-06-08 21:22:54 +08:00
save_log_path="${log_path}/${model_name}_${slim_trainer}_gpu_usetensorrt_${use_trt}_usefp16_${precision}_recbatchnum_${rec_batch_size}_infer.log"
command="${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${log_path}/${eval_model_name}_infer --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}"
${python} ${inference} --use_gpu=True --use_tensorrt=${use_trt} --precision=${precision} --benchmark=True --det_model_dir=${log_path}/${eval_model_name}_infer --rec_batch_num=${rec_batch_size} --rec_model_dir=${rec_model_dir} --image_dir=${img_dir} --save_log_path=${save_log_path}
status_check $? "${trainer}" "${command}" "${save_log_path}"
2021-06-08 20:38:30 +08:00
done
done
done
fi
done
done