334 lines
10 KiB
C++
334 lines
10 KiB
C++
|
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <vector>
|
||
|
#include <chrono>
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/imgcodecs.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "paddle_api.h" // NOLINT
|
||
|
|
||
|
#include "utils/db_post_process.cpp"
|
||
|
#include "utils/crnn_process.cpp"
|
||
|
#include <cstring>
|
||
|
#include <fstream>
|
||
|
|
||
|
using namespace paddle::lite_api; // NOLINT
|
||
|
|
||
|
struct Object {
|
||
|
cv::Rect rec;
|
||
|
int class_id;
|
||
|
float prob;
|
||
|
};
|
||
|
|
||
|
int64_t ShapeProduction(const shape_t& shape) {
|
||
|
int64_t res = 1;
|
||
|
for (auto i : shape) res *= i;
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
|
||
|
void neon_mean_scale(const float* din,
|
||
|
float* dout,
|
||
|
int size,
|
||
|
const std::vector<float> mean,
|
||
|
const std::vector<float> scale) {
|
||
|
if (mean.size() != 3 || scale.size() != 3) {
|
||
|
std::cerr << "[ERROR] mean or scale size must equal to 3\n";
|
||
|
exit(1);
|
||
|
}
|
||
|
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
|
||
|
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
|
||
|
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
|
||
|
float32x4_t vscale0 = vdupq_n_f32(scale[0]);
|
||
|
float32x4_t vscale1 = vdupq_n_f32(scale[1]);
|
||
|
float32x4_t vscale2 = vdupq_n_f32(scale[2]);
|
||
|
|
||
|
float* dout_c0 = dout;
|
||
|
float* dout_c1 = dout + size;
|
||
|
float* dout_c2 = dout + size * 2;
|
||
|
|
||
|
int i = 0;
|
||
|
for (; i < size - 3; i += 4) {
|
||
|
float32x4x3_t vin3 = vld3q_f32(din);
|
||
|
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
|
||
|
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
|
||
|
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
|
||
|
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
|
||
|
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
|
||
|
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
|
||
|
vst1q_f32(dout_c0, vs0);
|
||
|
vst1q_f32(dout_c1, vs1);
|
||
|
vst1q_f32(dout_c2, vs2);
|
||
|
|
||
|
din += 12;
|
||
|
dout_c0 += 4;
|
||
|
dout_c1 += 4;
|
||
|
dout_c2 += 4;
|
||
|
}
|
||
|
for (; i < size; i++) {
|
||
|
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
|
||
|
*(dout_c1++) = (*(din++) - mean[1]) * scale[1];
|
||
|
*(dout_c2++) = (*(din++) - mean[2]) * scale[2];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// resize image to a size multiple of 32 which is required by the network
|
||
|
cv::Mat resize_img_type0(const cv::Mat img, int max_size_len, float *ratio_h, float *ratio_w){
|
||
|
int w = img.cols;
|
||
|
int h = img.rows;
|
||
|
|
||
|
float ratio = 1.f;
|
||
|
int max_wh = w >=h ? w : h;
|
||
|
if (max_wh > max_size_len){
|
||
|
if (h > w){
|
||
|
ratio = float(max_size_len) / float(h);
|
||
|
} else {
|
||
|
ratio = float(max_size_len) / float(w);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int resize_h = int(float(h) * ratio);
|
||
|
int resize_w = int(float(w) * ratio);
|
||
|
if (resize_h % 32 == 0)
|
||
|
resize_h = resize_h;
|
||
|
else if (resize_h / 32 < 1)
|
||
|
resize_h = 32;
|
||
|
else
|
||
|
resize_h = (resize_h / 32 - 1) * 32;
|
||
|
|
||
|
if (resize_w % 32 == 0)
|
||
|
resize_w = resize_w;
|
||
|
else if (resize_w /32 < 1)
|
||
|
resize_w = 32;
|
||
|
else
|
||
|
resize_w = (resize_w/32 - 1)*32;
|
||
|
|
||
|
cv::Mat resize_img;
|
||
|
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||
|
|
||
|
*ratio_h = float(resize_h) / float(h);
|
||
|
*ratio_w = float(resize_w) / float(w);
|
||
|
return resize_img;
|
||
|
}
|
||
|
|
||
|
using namespace std;
|
||
|
|
||
|
void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img, std::string rec_model_file){
|
||
|
|
||
|
MobileConfig config;
|
||
|
config.set_model_from_file(rec_model_file);
|
||
|
|
||
|
std::shared_ptr<PaddlePredictor> predictor_crnn =
|
||
|
CreatePaddlePredictor<MobileConfig>(config);
|
||
|
|
||
|
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
|
||
|
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
|
||
|
|
||
|
cv::Mat srcimg;
|
||
|
img.copyTo(srcimg);
|
||
|
cv::Mat crop_img;
|
||
|
cv::Mat resize_img;
|
||
|
|
||
|
std::string dict_path = "./ppocr_keys_v1.txt";
|
||
|
auto charactor_dict = read_dict(dict_path);
|
||
|
|
||
|
std::cout << "The predicted text is :" << std::endl;
|
||
|
int index = 0;
|
||
|
for (int i=boxes.size()-1; i >= 0; i--) {
|
||
|
crop_img = get_rotate_crop_image(srcimg, boxes[i]);
|
||
|
|
||
|
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
|
||
|
|
||
|
resize_img = crnn_resize_img(crop_img, wh_ratio);
|
||
|
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
|
||
|
|
||
|
const float *dimg = reinterpret_cast<const float *>(resize_img.data);
|
||
|
|
||
|
std::unique_ptr <Tensor> input_tensor0(std::move(predictor_crnn->GetInput(0)));
|
||
|
input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
|
||
|
auto *data0 = input_tensor0->mutable_data<float>();
|
||
|
|
||
|
neon_mean_scale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
|
||
|
|
||
|
//// Run CRNN predictor
|
||
|
predictor_crnn->Run();
|
||
|
|
||
|
// Get output and run postprocess
|
||
|
std::unique_ptr<const Tensor> output_tensor0(
|
||
|
std::move(predictor_crnn->GetOutput(0)));
|
||
|
auto *rec_idx = output_tensor0->data<int>();
|
||
|
|
||
|
auto rec_idx_lod = output_tensor0->lod();
|
||
|
auto shape_out = output_tensor0->shape();
|
||
|
|
||
|
std::vector<int> pred_idx;
|
||
|
for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1] * 2); n += 2) {
|
||
|
pred_idx.push_back(int(rec_idx[n]));
|
||
|
}
|
||
|
|
||
|
if (pred_idx.size() < 1e-3)
|
||
|
continue;
|
||
|
std::cout << std::endl;
|
||
|
|
||
|
index += 1;
|
||
|
std::cout << index << "\t";
|
||
|
for (int n = 0; n < pred_idx.size(); n++) {
|
||
|
std::cout << charactor_dict[pred_idx[n]];
|
||
|
}
|
||
|
|
||
|
////get score
|
||
|
std::unique_ptr<const Tensor> output_tensor1(std::move(predictor_crnn->GetOutput(1)));
|
||
|
auto *predict_batch = output_tensor1->data<float>();
|
||
|
auto predict_shape = output_tensor1->shape();
|
||
|
|
||
|
auto predict_lod = output_tensor1->lod();
|
||
|
|
||
|
int argmax_idx;
|
||
|
int blank = predict_shape[1];
|
||
|
float score = 0.f;
|
||
|
int count = 0;
|
||
|
float max_value = 0.0f;
|
||
|
|
||
|
for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
|
||
|
argmax_idx = int(argmax(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));
|
||
|
max_value = float(
|
||
|
*std::max_element(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));
|
||
|
|
||
|
if (blank - 1 - argmax_idx > 1e-5) {
|
||
|
score += max_value;
|
||
|
count += 1;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
score /= count;
|
||
|
std::cout << "\tscore: " << score << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::vector<std::vector<std::vector<int>>> RunDetModel(std::string model_file, cv::Mat img) {
|
||
|
// Set MobileConfig
|
||
|
MobileConfig config;
|
||
|
config.set_model_from_file(model_file);
|
||
|
|
||
|
std::shared_ptr<PaddlePredictor> predictor =
|
||
|
CreatePaddlePredictor<MobileConfig>(config);
|
||
|
|
||
|
// Read img
|
||
|
int max_side_len = 960;
|
||
|
float ratio_h{};
|
||
|
float ratio_w{};
|
||
|
|
||
|
cv::Mat srcimg;
|
||
|
img.copyTo(srcimg);
|
||
|
|
||
|
img = resize_img_type0(img, max_side_len, &ratio_h, &ratio_w);
|
||
|
cv::Mat img_fp;
|
||
|
img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);
|
||
|
|
||
|
// Prepare input data from image
|
||
|
std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
|
||
|
input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
|
||
|
auto* data0 = input_tensor0->mutable_data<float>();
|
||
|
|
||
|
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
||
|
std::vector<float> scale = {1/0.229f, 1/0.224f, 1/0.225f};
|
||
|
const float* dimg = reinterpret_cast<const float*>(img_fp.data);
|
||
|
neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);
|
||
|
|
||
|
// Run predictor
|
||
|
predictor->Run();
|
||
|
|
||
|
// Get output and post process
|
||
|
std::unique_ptr<const Tensor> output_tensor(std::move(predictor->GetOutput(0)));
|
||
|
auto* outptr = output_tensor->data<float>();
|
||
|
auto shape_out = output_tensor->shape();
|
||
|
|
||
|
int64_t out_numl = 1;
|
||
|
double sum = 0;
|
||
|
for (auto i : shape_out) {
|
||
|
out_numl *= i;
|
||
|
}
|
||
|
|
||
|
// Save output
|
||
|
float pred[shape_out[2]][shape_out[3]];
|
||
|
unsigned char cbuf[shape_out[2]][shape_out[3]];
|
||
|
|
||
|
for (int i=0; i< int(shape_out[2]*shape_out[3]); i++){
|
||
|
pred[int(i/int(shape_out[3]))][int(i%shape_out[3])] = float(outptr[i]);
|
||
|
cbuf[int(i/int(shape_out[3]))][int(i%shape_out[3])] = (unsigned char) ((outptr[i])*255);
|
||
|
}
|
||
|
|
||
|
cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1, (unsigned char*)cbuf);
|
||
|
cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F, (float *)pred);
|
||
|
|
||
|
const double threshold = 0.3*255;
|
||
|
const double maxvalue = 255;
|
||
|
cv::Mat bit_map;
|
||
|
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
|
||
|
|
||
|
auto boxes = boxes_from_bitmap(pred_map, bit_map);
|
||
|
|
||
|
std::vector<std::vector<std::vector<int>>> filter_boxes = filter_tag_det_res(boxes, ratio_h, ratio_w, srcimg);
|
||
|
|
||
|
//// visualization
|
||
|
cv::Point rook_points[filter_boxes.size()][4];
|
||
|
for (int n=0; n<filter_boxes.size(); n++){
|
||
|
for (int m=0; m< filter_boxes[0].size(); m++){
|
||
|
rook_points[n][m] = cv::Point(int(filter_boxes[n][m][0]), int(filter_boxes[n][m][1]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cv::Mat img_vis;
|
||
|
srcimg.copyTo(img_vis);
|
||
|
for (int n=0; n<boxes.size(); n++){
|
||
|
const cv::Point* ppt[1] = { rook_points[n] };
|
||
|
int npt[] = { 4 };
|
||
|
cv::polylines(img_vis, ppt, npt,1,1,CV_RGB(0,255,0),2,8,0);
|
||
|
}
|
||
|
|
||
|
cv::imwrite("./imgs_vis/vis.jpg", img_vis);
|
||
|
std::cout << "The detection visualized image saved in ./imgs_vis/" <<std::endl;
|
||
|
|
||
|
return filter_boxes;
|
||
|
}
|
||
|
|
||
|
|
||
|
int main(int argc, char** argv) {
|
||
|
if (argc < 4) {
|
||
|
std::cerr << "[ERROR] usage: " << argv[0] << " det_model_file rec_model_file image_path\n";
|
||
|
exit(1);
|
||
|
}
|
||
|
std::string det_model_file = argv[1];
|
||
|
std::string rec_model_file = argv[2];
|
||
|
std::string img_path = argv[3];
|
||
|
|
||
|
auto start = std::chrono::system_clock::now();
|
||
|
|
||
|
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
|
||
|
auto boxes = RunDetModel(det_model_file, srcimg);
|
||
|
|
||
|
RunRecModel(boxes, srcimg, rec_model_file);
|
||
|
|
||
|
auto end = std::chrono::system_clock::now();
|
||
|
auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||
|
std::cout << "花费了"
|
||
|
<< double(duration.count()) * std::chrono::microseconds::period::num /std::chrono::microseconds::period::den
|
||
|
<< "秒" << std::endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|