PaddleOCR/configs/rec/rec_r31_sar.yml

100 lines
2.2 KiB
YAML
Raw Normal View History

2021-08-24 11:45:59 +08:00
Global:
use_gpu: true
epoch_num: 5
log_smooth_window: 20
print_batch_step: 20
2021-08-24 12:23:03 +08:00
save_model_dir: ./sar_rec
2021-08-24 11:45:59 +08:00
save_epoch_step: 1
# evaluation is run every 2000 iterations
eval_batch_step: [0, 2000]
cal_metric_during_train: True
2021-08-24 12:23:03 +08:00
pretrained_model:
2021-08-24 11:45:59 +08:00
checkpoints:
save_inference_dir:
use_visualdl: False
2021-08-24 12:23:03 +08:00
infer_img:
2021-08-24 11:45:59 +08:00
# for data or label process
character_dict_path: ppocr/utils/dict90.txt
character_type: EN_symbol
2021-08-24 11:45:59 +08:00
max_text_length: 30
infer_mode: False
use_space_char: False
2021-09-02 15:28:30 +08:00
rm_symbol: True
2021-08-24 11:45:59 +08:00
save_res_path: ./output/rec/predicts_sar.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Piecewise
decay_epochs: [3, 4]
values: [0.001, 0.0001, 0.00001]
regularizer:
name: 'L2'
factor: 0
Architecture:
model_type: rec
algorithm: SAR
Transform:
Backbone:
name: ResNet31
Head:
name: SARHead
Loss:
name: SARLoss
PostProcess:
name: SARLabelDecode
Metric:
name: RecMetric
Train:
dataset:
2021-08-24 12:23:03 +08:00
name: SimpleDataSet
label_file_list: ['./train_data/train_list.txt']
data_dir: ./train_data/
2021-08-24 12:23:03 +08:00
ratio_list: 1.0
2021-08-24 11:45:59 +08:00
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- SARRecResizeImg:
image_shape: [3, 48, 48, 160] # h:48 w:[48,160]
width_downsample_ratio: 0.25
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
loader:
shuffle: True
2021-08-31 19:33:41 +08:00
batch_size_per_card: 64
2021-08-24 11:45:59 +08:00
drop_last: True
num_workers: 8
use_shared_memory: False
Eval:
dataset:
name: LMDBDataSet
2021-09-14 11:31:45 +08:00
data_dir: ./train_data/data_lmdb_release/evaluation/
2021-08-24 11:45:59 +08:00
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- SARLabelEncode: # Class handling label
- SARRecResizeImg:
image_shape: [3, 48, 48, 160]
width_downsample_ratio: 0.25
- KeepKeys:
keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 64
num_workers: 4
use_shared_memory: False
2021-08-24 12:23:03 +08:00