2020-12-11 19:23:27 +08:00
# Copyright (c) <2015-Present> Tzutalin
# Copyright (C) 2013 MIT, Computer Science and Artificial Intelligence Laboratory. Bryan Russell, Antonio Torralba,
# William T. Freeman. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
# associated documentation files (the "Software"), to deal in the Software without restriction, including without
# limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
# NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
# SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from math import sqrt
from libs . ustr import ustr
import hashlib
import re
import sys
import cv2
import numpy as np
try :
from PyQt5 . QtGui import *
from PyQt5 . QtCore import *
from PyQt5 . QtWidgets import *
except ImportError :
from PyQt4 . QtGui import *
from PyQt4 . QtCore import *
def newIcon ( icon , iconSize = None ) :
if iconSize is not None :
return QIcon ( QIcon ( ' :/ ' + icon ) . pixmap ( iconSize , iconSize ) )
else :
return QIcon ( ' :/ ' + icon )
def newButton ( text , icon = None , slot = None ) :
b = QPushButton ( text )
if icon is not None :
b . setIcon ( newIcon ( icon ) )
if slot is not None :
b . clicked . connect ( slot )
return b
def newAction ( parent , text , slot = None , shortcut = None , icon = None ,
tip = None , checkable = False , enabled = True , iconSize = None ) :
""" Create a new action and assign callbacks, shortcuts, etc. """
a = QAction ( text , parent )
if icon is not None :
if iconSize is not None :
a . setIcon ( newIcon ( icon , iconSize ) )
else :
a . setIcon ( newIcon ( icon ) )
if shortcut is not None :
if isinstance ( shortcut , ( list , tuple ) ) :
a . setShortcuts ( shortcut )
else :
a . setShortcut ( shortcut )
if tip is not None :
a . setToolTip ( tip )
a . setStatusTip ( tip )
if slot is not None :
a . triggered . connect ( slot )
if checkable :
a . setCheckable ( True )
a . setEnabled ( enabled )
return a
def addActions ( widget , actions ) :
for action in actions :
if action is None :
widget . addSeparator ( )
elif isinstance ( action , QMenu ) :
widget . addMenu ( action )
else :
widget . addAction ( action )
def labelValidator ( ) :
return QRegExpValidator ( QRegExp ( r ' ^[^ \ t].+ ' ) , None )
class struct ( object ) :
def __init__ ( self , * * kwargs ) :
self . __dict__ . update ( kwargs )
def distance ( p ) :
return sqrt ( p . x ( ) * p . x ( ) + p . y ( ) * p . y ( ) )
def fmtShortcut ( text ) :
mod , key = text . split ( ' + ' , 1 )
return ' <b> %s </b>+<b> %s </b> ' % ( mod , key )
def generateColorByText ( text ) :
s = ustr ( text )
hashCode = int ( hashlib . sha256 ( s . encode ( ' utf-8 ' ) ) . hexdigest ( ) , 16 )
r = int ( ( hashCode / 255 ) % 255 )
g = int ( ( hashCode / 65025 ) % 255 )
b = int ( ( hashCode / 16581375 ) % 255 )
return QColor ( r , g , b , 100 )
def have_qstring ( ) :
''' p3/qt5 get rid of QString wrapper as py3 has native unicode str type '''
return not ( sys . version_info . major > = 3 or QT_VERSION_STR . startswith ( ' 5. ' ) )
def util_qt_strlistclass ( ) :
return QStringList if have_qstring ( ) else list
def natural_sort ( list , key = lambda s : s ) :
"""
Sort the list into natural alphanumeric order .
"""
def get_alphanum_key_func ( key ) :
convert = lambda text : int ( text ) if text . isdigit ( ) else text
return lambda s : [ convert ( c ) for c in re . split ( ' ([0-9]+) ' , key ( s ) ) ]
sort_key = get_alphanum_key_func ( key )
list . sort ( key = sort_key )
def get_rotate_crop_image ( img , points ) :
2021-04-22 18:48:42 +08:00
# Use Green's theory to judge clockwise or counterclockwise
# author: biyanhua
d = 0.0
for index in range ( - 1 , 3 ) :
d + = - 0.5 * ( points [ index + 1 ] [ 1 ] + points [ index ] [ 1 ] ) * (
points [ index + 1 ] [ 0 ] - points [ index ] [ 0 ] )
if d < 0 : # counterclockwise
tmp = np . array ( points )
points [ 1 ] , points [ 3 ] = tmp [ 3 ] , tmp [ 1 ]
2020-12-11 19:23:27 +08:00
try :
img_crop_width = int (
max (
np . linalg . norm ( points [ 0 ] - points [ 1 ] ) ,
np . linalg . norm ( points [ 2 ] - points [ 3 ] ) ) )
img_crop_height = int (
max (
np . linalg . norm ( points [ 0 ] - points [ 3 ] ) ,
np . linalg . norm ( points [ 1 ] - points [ 2 ] ) ) )
pts_std = np . float32 ( [ [ 0 , 0 ] , [ img_crop_width , 0 ] ,
[ img_crop_width , img_crop_height ] ,
[ 0 , img_crop_height ] ] )
M = cv2 . getPerspectiveTransform ( points , pts_std )
dst_img = cv2 . warpPerspective (
img ,
M , ( img_crop_width , img_crop_height ) ,
borderMode = cv2 . BORDER_REPLICATE ,
flags = cv2 . INTER_CUBIC )
dst_img_height , dst_img_width = dst_img . shape [ 0 : 2 ]
if dst_img_height * 1.0 / dst_img_width > = 1.5 :
dst_img = np . rot90 ( dst_img )
return dst_img
except Exception as e :
print ( e )
def stepsInfo ( lang = ' en ' ) :
if lang == ' ch ' :
msg = " 1. 安装与运行:使用上述命令安装与运行程序。 \n " \
" 2. 打开文件夹:在菜单栏点击 “文件” - 打开目录 选择待标记图片的文件夹. \n " \
" 3. 自动标注:点击 ”自动标注“, 使用PPOCR超轻量模型对图片文件名前图片状态为 “X” 的图片进行自动标注。 \n " \
" 4. 手动标注:点击 “矩形标注”(推荐直接在英文模式下点击键盘中的 “W”),用户可对当前图片中模型未检出的部分进行手动 " \
" 绘制标记框。点击键盘P, 则使用四点标注模式( 或点击“编辑” - “四点标注”) , 用户依次点击4个点后, 双击左键表示标注完成。 \n " \
" 5. 标记框绘制完成后,用户点击 “确认”,检测框会先被预分配一个 “待识别” 标签。 \n " \
" 6. 重新识别:将图片中的所有检测画绘制/调整完成后,点击 “重新识别”, PPOCR模型会对当前图片中的**所有检测框**重新识别。 \n " \
" 7. 内容更改:双击识别结果,对不准确的识别结果进行手动更改。 \n " \
" 8. 保存:点击 “保存”,图片状态切换为 “√”,跳转至下一张。 \n " \
" 9. 删除:点击 “删除图像”,图片将会被删除至回收站。 \n " \
" 10. 标注结果:关闭应用程序或切换文件路径后,手动保存过的标签将会被存放在所打开图片文件夹下的 " \
" *Label.txt*中。在菜单栏点击 “PaddleOCR” - 保存识别结果后,会将此类图片的识别训练数据保存在*crop_img*文件夹下, " \
" 识别标签保存在*rec_gt.txt*中。 \n "
else :
msg = " 1. Build and launch using the instructions above. \n " \
" 2. Click ' Open Dir ' in Menu/File to select the folder of the picture. \n " \
" 3. Click ' Auto recognition ' , use PPOCR model to automatically annotate images which marked with ' X ' before the file name. " \
" 4. Create Box: \n " \
" 4.1 Click ' Create RectBox ' or press ' W ' in English keyboard mode to draw a new rectangle detection box. Click and release left mouse to select a region to annotate the text area. \n " \
" 4.2 Press ' P ' to enter four-point labeling mode which enables you to create any four-point shape by clicking four points with the left mouse button in succession and DOUBLE CLICK the left mouse as the signal of labeling completion. \n " \
" 5. After the marking frame is drawn, the user clicks ' OK ' , and the detection frame will be pre-assigned a TEMPORARY label. \n " \
" 6. Click re-Recognition, model will rewrite ALL recognition results in ALL detection box. \n " \
" 7. Double click the result in ' recognition result ' list to manually change inaccurate recognition results. \n " \
" 8. Click ' Save ' , the image status will switch to ' √ ' ,then the program automatically jump to the next. \n " \
" 9. Click ' Delete Image ' and the image will be deleted to the recycle bin. \n " \
" 10. Labeling result: After closing the application or switching the file path, the manually saved label will be stored in *Label.txt* under the opened picture folder. \n " \
" Click PaddleOCR-Save Recognition Results in the menu bar, the recognition training data of such pictures will be saved in the *crop_img* folder, and the recognition label will be saved in *rec_gt.txt*. \n "
return msg