2020-05-10 16:26:57 +08:00
|
|
|
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
#you may not use this file except in compliance with the License.
|
|
|
|
#You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
#See the License for the specific language governing permissions and
|
|
|
|
#limitations under the License.
|
|
|
|
|
|
|
|
import math
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import json
|
2020-07-17 13:48:08 +08:00
|
|
|
import sys
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
class EASTProcessTrain(object):
|
|
|
|
def __init__(self, params):
|
|
|
|
self.img_set_dir = params['img_set_dir']
|
|
|
|
self.random_scale = np.array([0.5, 1, 2.0, 3.0])
|
|
|
|
self.background_ratio = params['background_ratio']
|
|
|
|
self.min_crop_side_ratio = params['min_crop_side_ratio']
|
|
|
|
image_shape = params['image_shape']
|
|
|
|
self.input_size = image_shape[1]
|
|
|
|
self.min_text_size = params['min_text_size']
|
|
|
|
|
|
|
|
def preprocess(self, im):
|
|
|
|
input_size = self.input_size
|
|
|
|
im_shape = im.shape
|
|
|
|
im_size_min = np.min(im_shape[0:2])
|
|
|
|
im_size_max = np.max(im_shape[0:2])
|
|
|
|
im_scale = float(input_size) / float(im_size_max)
|
|
|
|
im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
|
|
|
|
img_mean = [0.485, 0.456, 0.406]
|
|
|
|
img_std = [0.229, 0.224, 0.225]
|
|
|
|
im = im[:, :, ::-1].astype(np.float32)
|
|
|
|
im = im / 255
|
|
|
|
im -= img_mean
|
|
|
|
im /= img_std
|
|
|
|
new_h, new_w, _ = im.shape
|
|
|
|
im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
|
|
|
|
im_padded[:new_h, :new_w, :] = im
|
|
|
|
im_padded = im_padded.transpose((2, 0, 1))
|
|
|
|
im_padded = im_padded[np.newaxis, :]
|
|
|
|
return im_padded, im_scale
|
|
|
|
|
|
|
|
def convert_label_infor(self, label_infor):
|
|
|
|
label_infor = label_infor.decode()
|
|
|
|
label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
|
|
|
|
substr = label_infor.strip("\n").split("\t")
|
2020-08-03 21:01:53 +08:00
|
|
|
img_path = self.img_set_dir + "/" + substr[0]
|
2020-05-10 16:26:57 +08:00
|
|
|
label = json.loads(substr[1])
|
|
|
|
nBox = len(label)
|
|
|
|
wordBBs, txts, txt_tags = [], [], []
|
|
|
|
for bno in range(0, nBox):
|
|
|
|
wordBB = label[bno]['points']
|
|
|
|
txt = label[bno]['transcription']
|
|
|
|
wordBBs.append(wordBB)
|
|
|
|
txts.append(txt)
|
|
|
|
if txt == '###':
|
|
|
|
txt_tags.append(True)
|
|
|
|
else:
|
|
|
|
txt_tags.append(False)
|
|
|
|
wordBBs = np.array(wordBBs, dtype=np.float32)
|
|
|
|
txt_tags = np.array(txt_tags, dtype=np.bool)
|
|
|
|
return img_path, wordBBs, txt_tags, txts
|
|
|
|
|
|
|
|
def rotate_im_poly(self, im, text_polys):
|
|
|
|
"""
|
|
|
|
rotate image with 90 / 180 / 270 degre
|
|
|
|
"""
|
|
|
|
im_w, im_h = im.shape[1], im.shape[0]
|
|
|
|
dst_im = im.copy()
|
|
|
|
dst_polys = []
|
|
|
|
rand_degree_ratio = np.random.rand()
|
|
|
|
rand_degree_cnt = 1
|
2020-07-17 13:48:08 +08:00
|
|
|
if 0.333 < rand_degree_ratio < 0.666:
|
2020-05-10 16:26:57 +08:00
|
|
|
rand_degree_cnt = 2
|
|
|
|
elif rand_degree_ratio > 0.666:
|
|
|
|
rand_degree_cnt = 3
|
|
|
|
for i in range(rand_degree_cnt):
|
|
|
|
dst_im = np.rot90(dst_im)
|
|
|
|
rot_degree = -90 * rand_degree_cnt
|
|
|
|
rot_angle = rot_degree * math.pi / 180.0
|
|
|
|
n_poly = text_polys.shape[0]
|
|
|
|
cx, cy = 0.5 * im_w, 0.5 * im_h
|
|
|
|
ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
|
|
|
|
for i in range(n_poly):
|
|
|
|
wordBB = text_polys[i]
|
|
|
|
poly = []
|
|
|
|
for j in range(4):
|
|
|
|
sx, sy = wordBB[j][0], wordBB[j][1]
|
|
|
|
dx = math.cos(rot_angle) * (sx - cx)\
|
|
|
|
- math.sin(rot_angle) * (sy - cy) + ncx
|
|
|
|
dy = math.sin(rot_angle) * (sx - cx)\
|
|
|
|
+ math.cos(rot_angle) * (sy - cy) + ncy
|
|
|
|
poly.append([dx, dy])
|
|
|
|
dst_polys.append(poly)
|
|
|
|
dst_polys = np.array(dst_polys, dtype=np.float32)
|
|
|
|
return dst_im, dst_polys
|
|
|
|
|
|
|
|
def polygon_area(self, poly):
|
|
|
|
"""
|
|
|
|
compute area of a polygon
|
|
|
|
:param poly:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
|
|
|
|
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
|
|
|
|
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
|
|
|
|
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
|
|
|
|
return np.sum(edge) / 2.
|
|
|
|
|
|
|
|
def check_and_validate_polys(self, polys, tags, img_height, img_width):
|
|
|
|
"""
|
|
|
|
check so that the text poly is in the same direction,
|
|
|
|
and also filter some invalid polygons
|
|
|
|
:param polys:
|
|
|
|
:param tags:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
h, w = img_height, img_width
|
|
|
|
if polys.shape[0] == 0:
|
|
|
|
return polys
|
|
|
|
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
|
|
|
|
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
|
|
|
|
|
|
|
|
validated_polys = []
|
|
|
|
validated_tags = []
|
|
|
|
for poly, tag in zip(polys, tags):
|
|
|
|
p_area = self.polygon_area(poly)
|
|
|
|
#invalid poly
|
|
|
|
if abs(p_area) < 1:
|
|
|
|
continue
|
|
|
|
if p_area > 0:
|
|
|
|
#'poly in wrong direction'
|
2020-07-17 13:48:08 +08:00
|
|
|
if not tag:
|
2020-05-10 16:26:57 +08:00
|
|
|
tag = True #reversed cases should be ignore
|
|
|
|
poly = poly[(0, 3, 2, 1), :]
|
|
|
|
validated_polys.append(poly)
|
|
|
|
validated_tags.append(tag)
|
|
|
|
return np.array(validated_polys), np.array(validated_tags)
|
|
|
|
|
|
|
|
def draw_img_polys(self, img, polys):
|
|
|
|
if len(img.shape) == 4:
|
|
|
|
img = np.squeeze(img, axis=0)
|
|
|
|
if img.shape[0] == 3:
|
|
|
|
img = img.transpose((1, 2, 0))
|
|
|
|
img[:, :, 2] += 123.68
|
|
|
|
img[:, :, 1] += 116.78
|
|
|
|
img[:, :, 0] += 103.94
|
|
|
|
cv2.imwrite("tmp.jpg", img)
|
|
|
|
img = cv2.imread("tmp.jpg")
|
|
|
|
for box in polys:
|
|
|
|
box = box.astype(np.int32).reshape((-1, 1, 2))
|
|
|
|
cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
|
|
|
|
import random
|
|
|
|
ino = random.randint(0, 100)
|
|
|
|
cv2.imwrite("tmp_%d.jpg" % ino, img)
|
|
|
|
return
|
|
|
|
|
|
|
|
def shrink_poly(self, poly, r):
|
|
|
|
"""
|
|
|
|
fit a poly inside the origin poly, maybe bugs here...
|
|
|
|
used for generate the score map
|
|
|
|
:param poly: the text poly
|
|
|
|
:param r: r in the paper
|
|
|
|
:return: the shrinked poly
|
|
|
|
"""
|
|
|
|
# shrink ratio
|
|
|
|
R = 0.3
|
|
|
|
# find the longer pair
|
|
|
|
dist0 = np.linalg.norm(poly[0] - poly[1])
|
|
|
|
dist1 = np.linalg.norm(poly[2] - poly[3])
|
|
|
|
dist2 = np.linalg.norm(poly[0] - poly[3])
|
|
|
|
dist3 = np.linalg.norm(poly[1] - poly[2])
|
|
|
|
if dist0 + dist1 > dist2 + dist3:
|
|
|
|
# first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
|
|
|
|
## p0, p1
|
|
|
|
theta = np.arctan2((poly[1][1] - poly[0][1]),
|
|
|
|
(poly[1][0] - poly[0][0]))
|
|
|
|
poly[0][0] += R * r[0] * np.cos(theta)
|
|
|
|
poly[0][1] += R * r[0] * np.sin(theta)
|
|
|
|
poly[1][0] -= R * r[1] * np.cos(theta)
|
|
|
|
poly[1][1] -= R * r[1] * np.sin(theta)
|
|
|
|
## p2, p3
|
|
|
|
theta = np.arctan2((poly[2][1] - poly[3][1]),
|
|
|
|
(poly[2][0] - poly[3][0]))
|
|
|
|
poly[3][0] += R * r[3] * np.cos(theta)
|
|
|
|
poly[3][1] += R * r[3] * np.sin(theta)
|
|
|
|
poly[2][0] -= R * r[2] * np.cos(theta)
|
|
|
|
poly[2][1] -= R * r[2] * np.sin(theta)
|
|
|
|
## p0, p3
|
|
|
|
theta = np.arctan2((poly[3][0] - poly[0][0]),
|
|
|
|
(poly[3][1] - poly[0][1]))
|
|
|
|
poly[0][0] += R * r[0] * np.sin(theta)
|
|
|
|
poly[0][1] += R * r[0] * np.cos(theta)
|
|
|
|
poly[3][0] -= R * r[3] * np.sin(theta)
|
|
|
|
poly[3][1] -= R * r[3] * np.cos(theta)
|
|
|
|
## p1, p2
|
|
|
|
theta = np.arctan2((poly[2][0] - poly[1][0]),
|
|
|
|
(poly[2][1] - poly[1][1]))
|
|
|
|
poly[1][0] += R * r[1] * np.sin(theta)
|
|
|
|
poly[1][1] += R * r[1] * np.cos(theta)
|
|
|
|
poly[2][0] -= R * r[2] * np.sin(theta)
|
|
|
|
poly[2][1] -= R * r[2] * np.cos(theta)
|
|
|
|
else:
|
|
|
|
## p0, p3
|
|
|
|
# print poly
|
|
|
|
theta = np.arctan2((poly[3][0] - poly[0][0]),
|
|
|
|
(poly[3][1] - poly[0][1]))
|
|
|
|
poly[0][0] += R * r[0] * np.sin(theta)
|
|
|
|
poly[0][1] += R * r[0] * np.cos(theta)
|
|
|
|
poly[3][0] -= R * r[3] * np.sin(theta)
|
|
|
|
poly[3][1] -= R * r[3] * np.cos(theta)
|
|
|
|
## p1, p2
|
|
|
|
theta = np.arctan2((poly[2][0] - poly[1][0]),
|
|
|
|
(poly[2][1] - poly[1][1]))
|
|
|
|
poly[1][0] += R * r[1] * np.sin(theta)
|
|
|
|
poly[1][1] += R * r[1] * np.cos(theta)
|
|
|
|
poly[2][0] -= R * r[2] * np.sin(theta)
|
|
|
|
poly[2][1] -= R * r[2] * np.cos(theta)
|
|
|
|
## p0, p1
|
|
|
|
theta = np.arctan2((poly[1][1] - poly[0][1]),
|
|
|
|
(poly[1][0] - poly[0][0]))
|
|
|
|
poly[0][0] += R * r[0] * np.cos(theta)
|
|
|
|
poly[0][1] += R * r[0] * np.sin(theta)
|
|
|
|
poly[1][0] -= R * r[1] * np.cos(theta)
|
|
|
|
poly[1][1] -= R * r[1] * np.sin(theta)
|
|
|
|
## p2, p3
|
|
|
|
theta = np.arctan2((poly[2][1] - poly[3][1]),
|
|
|
|
(poly[2][0] - poly[3][0]))
|
|
|
|
poly[3][0] += R * r[3] * np.cos(theta)
|
|
|
|
poly[3][1] += R * r[3] * np.sin(theta)
|
|
|
|
poly[2][0] -= R * r[2] * np.cos(theta)
|
|
|
|
poly[2][1] -= R * r[2] * np.sin(theta)
|
|
|
|
return poly
|
|
|
|
|
|
|
|
def generate_quad(self, im_size, polys, tags):
|
|
|
|
"""
|
|
|
|
Generate quadrangle.
|
|
|
|
"""
|
|
|
|
h, w = im_size
|
|
|
|
poly_mask = np.zeros((h, w), dtype=np.uint8)
|
|
|
|
score_map = np.zeros((h, w), dtype=np.uint8)
|
|
|
|
# (x1, y1, ..., x4, y4, short_edge_norm)
|
|
|
|
geo_map = np.zeros((h, w, 9), dtype=np.float32)
|
|
|
|
# mask used during traning, to ignore some hard areas
|
|
|
|
training_mask = np.ones((h, w), dtype=np.uint8)
|
|
|
|
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
|
|
|
|
poly = poly_tag[0]
|
|
|
|
tag = poly_tag[1]
|
|
|
|
|
|
|
|
r = [None, None, None, None]
|
|
|
|
for i in range(4):
|
|
|
|
dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
|
|
|
|
dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
|
|
|
|
r[i] = min(dist1, dist2)
|
|
|
|
# score map
|
|
|
|
shrinked_poly = self.shrink_poly(
|
|
|
|
poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
|
|
|
|
cv2.fillPoly(score_map, shrinked_poly, 1)
|
|
|
|
cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
|
|
|
|
# if the poly is too small, then ignore it during training
|
|
|
|
poly_h = min(
|
|
|
|
np.linalg.norm(poly[0] - poly[3]),
|
|
|
|
np.linalg.norm(poly[1] - poly[2]))
|
|
|
|
poly_w = min(
|
|
|
|
np.linalg.norm(poly[0] - poly[1]),
|
|
|
|
np.linalg.norm(poly[2] - poly[3]))
|
|
|
|
if min(poly_h, poly_w) < self.min_text_size:
|
|
|
|
cv2.fillPoly(training_mask,
|
|
|
|
poly.astype(np.int32)[np.newaxis, :, :], 0)
|
|
|
|
|
|
|
|
if tag:
|
|
|
|
cv2.fillPoly(training_mask,
|
|
|
|
poly.astype(np.int32)[np.newaxis, :, :], 0)
|
|
|
|
|
|
|
|
xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
|
|
|
|
# geo map.
|
|
|
|
y_in_poly = xy_in_poly[:, 0]
|
|
|
|
x_in_poly = xy_in_poly[:, 1]
|
|
|
|
poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
|
|
|
|
poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
|
|
|
|
for pno in range(4):
|
|
|
|
geo_channel_beg = pno * 2
|
|
|
|
geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
|
|
|
|
x_in_poly - poly[pno, 0]
|
|
|
|
geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
|
|
|
|
y_in_poly - poly[pno, 1]
|
|
|
|
geo_map[y_in_poly, x_in_poly, 8] = \
|
|
|
|
1.0 / max(min(poly_h, poly_w), 1.0)
|
|
|
|
return score_map, geo_map, training_mask
|
|
|
|
|
|
|
|
def crop_area(self,
|
|
|
|
im,
|
|
|
|
polys,
|
|
|
|
tags,
|
|
|
|
txts,
|
|
|
|
crop_background=False,
|
|
|
|
max_tries=50):
|
|
|
|
"""
|
|
|
|
make random crop from the input image
|
|
|
|
:param im:
|
|
|
|
:param polys:
|
|
|
|
:param tags:
|
|
|
|
:param crop_background:
|
|
|
|
:param max_tries:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
h, w, _ = im.shape
|
|
|
|
pad_h = h // 10
|
|
|
|
pad_w = w // 10
|
|
|
|
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
|
|
|
|
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
|
|
|
|
for poly in polys:
|
|
|
|
poly = np.round(poly, decimals=0).astype(np.int32)
|
|
|
|
minx = np.min(poly[:, 0])
|
|
|
|
maxx = np.max(poly[:, 0])
|
|
|
|
w_array[minx + pad_w:maxx + pad_w] = 1
|
|
|
|
miny = np.min(poly[:, 1])
|
|
|
|
maxy = np.max(poly[:, 1])
|
|
|
|
h_array[miny + pad_h:maxy + pad_h] = 1
|
|
|
|
# ensure the cropped area not across a text
|
|
|
|
h_axis = np.where(h_array == 0)[0]
|
|
|
|
w_axis = np.where(w_array == 0)[0]
|
|
|
|
if len(h_axis) == 0 or len(w_axis) == 0:
|
|
|
|
return im, polys, tags, txts
|
|
|
|
|
|
|
|
for i in range(max_tries):
|
|
|
|
xx = np.random.choice(w_axis, size=2)
|
|
|
|
xmin = np.min(xx) - pad_w
|
|
|
|
xmax = np.max(xx) - pad_w
|
|
|
|
xmin = np.clip(xmin, 0, w - 1)
|
|
|
|
xmax = np.clip(xmax, 0, w - 1)
|
|
|
|
yy = np.random.choice(h_axis, size=2)
|
|
|
|
ymin = np.min(yy) - pad_h
|
|
|
|
ymax = np.max(yy) - pad_h
|
|
|
|
ymin = np.clip(ymin, 0, h - 1)
|
|
|
|
ymax = np.clip(ymax, 0, h - 1)
|
|
|
|
if xmax - xmin < self.min_crop_side_ratio * w or \
|
|
|
|
ymax - ymin < self.min_crop_side_ratio * h:
|
|
|
|
# area too small
|
|
|
|
continue
|
|
|
|
if polys.shape[0] != 0:
|
|
|
|
poly_axis_in_area = (polys[:, :, 0] >= xmin)\
|
|
|
|
& (polys[:, :, 0] <= xmax)\
|
|
|
|
& (polys[:, :, 1] >= ymin)\
|
|
|
|
& (polys[:, :, 1] <= ymax)
|
|
|
|
selected_polys = np.where(
|
|
|
|
np.sum(poly_axis_in_area, axis=1) == 4)[0]
|
|
|
|
else:
|
|
|
|
selected_polys = []
|
|
|
|
|
|
|
|
if len(selected_polys) == 0:
|
|
|
|
# no text in this area
|
|
|
|
if crop_background:
|
|
|
|
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
|
|
|
|
polys = []
|
|
|
|
tags = []
|
|
|
|
txts = []
|
|
|
|
return im, polys, tags, txts
|
|
|
|
else:
|
|
|
|
continue
|
|
|
|
|
|
|
|
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
|
|
|
|
polys = polys[selected_polys]
|
|
|
|
tags = tags[selected_polys]
|
|
|
|
txts_tmp = []
|
|
|
|
for selected_poly in selected_polys:
|
|
|
|
txts_tmp.append(txts[selected_poly])
|
|
|
|
txts = txts_tmp
|
|
|
|
polys[:, :, 0] -= xmin
|
|
|
|
polys[:, :, 1] -= ymin
|
|
|
|
return im, polys, tags, txts
|
|
|
|
return im, polys, tags, txts
|
|
|
|
|
|
|
|
def crop_background_infor(self, im, text_polys, text_tags, text_strs):
|
|
|
|
im, text_polys, text_tags, text_strs = self.crop_area(
|
|
|
|
im, text_polys, text_tags, text_strs, crop_background=True)
|
|
|
|
if len(text_polys) > 0:
|
|
|
|
return None
|
|
|
|
# pad and resize image
|
|
|
|
input_size = self.input_size
|
|
|
|
im, ratio = self.preprocess(im)
|
|
|
|
score_map = np.zeros((input_size, input_size), dtype=np.float32)
|
|
|
|
geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
|
|
|
|
training_mask = np.ones((input_size, input_size), dtype=np.float32)
|
|
|
|
return im, score_map, geo_map, training_mask
|
|
|
|
|
|
|
|
def crop_foreground_infor(self, im, text_polys, text_tags, text_strs):
|
|
|
|
im, text_polys, text_tags, text_strs = self.crop_area(
|
|
|
|
im, text_polys, text_tags, text_strs, crop_background=False)
|
|
|
|
if text_polys.shape[0] == 0:
|
|
|
|
return None
|
|
|
|
#continue for all ignore case
|
|
|
|
if np.sum((text_tags * 1.0)) >= text_tags.size:
|
|
|
|
return None
|
|
|
|
# pad and resize image
|
|
|
|
input_size = self.input_size
|
|
|
|
im, ratio = self.preprocess(im)
|
|
|
|
text_polys[:, :, 0] *= ratio
|
|
|
|
text_polys[:, :, 1] *= ratio
|
|
|
|
_, _, new_h, new_w = im.shape
|
|
|
|
# print(im.shape)
|
|
|
|
# self.draw_img_polys(im, text_polys)
|
|
|
|
score_map, geo_map, training_mask = self.generate_quad(
|
|
|
|
(new_h, new_w), text_polys, text_tags)
|
|
|
|
return im, score_map, geo_map, training_mask
|
|
|
|
|
|
|
|
def __call__(self, label_infor):
|
|
|
|
infor = self.convert_label_infor(label_infor)
|
|
|
|
im_path, text_polys, text_tags, text_strs = infor
|
|
|
|
im = cv2.imread(im_path)
|
|
|
|
if im is None:
|
|
|
|
return None
|
|
|
|
if text_polys.shape[0] == 0:
|
|
|
|
return None
|
|
|
|
#add rotate cases
|
|
|
|
if np.random.rand() < 0.5:
|
|
|
|
im, text_polys = self.rotate_im_poly(im, text_polys)
|
|
|
|
h, w, _ = im.shape
|
|
|
|
text_polys, text_tags = self.check_and_validate_polys(text_polys,
|
|
|
|
text_tags, h, w)
|
|
|
|
if text_polys.shape[0] == 0:
|
|
|
|
return None
|
|
|
|
|
|
|
|
# random scale this image
|
|
|
|
rd_scale = np.random.choice(self.random_scale)
|
|
|
|
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
|
|
|
|
text_polys *= rd_scale
|
|
|
|
if np.random.rand() < self.background_ratio:
|
|
|
|
outs = self.crop_background_infor(im, text_polys, text_tags,
|
|
|
|
text_strs)
|
|
|
|
else:
|
|
|
|
outs = self.crop_foreground_infor(im, text_polys, text_tags,
|
|
|
|
text_strs)
|
|
|
|
|
|
|
|
if outs is None:
|
|
|
|
return None
|
|
|
|
im, score_map, geo_map, training_mask = outs
|
|
|
|
score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
|
|
|
|
geo_map = np.swapaxes(geo_map, 1, 2)
|
|
|
|
geo_map = np.swapaxes(geo_map, 1, 0)
|
|
|
|
geo_map = geo_map[:, ::4, ::4].astype(np.float32)
|
|
|
|
training_mask = training_mask[np.newaxis, ::4, ::4]
|
|
|
|
training_mask = training_mask.astype(np.float32)
|
|
|
|
return im, score_map, geo_map, training_mask
|
|
|
|
|
|
|
|
|
|
|
|
class EASTProcessTest(object):
|
|
|
|
def __init__(self, params):
|
|
|
|
super(EASTProcessTest, self).__init__()
|
2020-06-19 15:54:20 +08:00
|
|
|
self.resize_type = 0
|
|
|
|
if 'test_image_shape' in params:
|
|
|
|
self.image_shape = params['test_image_shape']
|
|
|
|
# print(self.image_shape)
|
|
|
|
self.resize_type = 1
|
2020-05-10 16:26:57 +08:00
|
|
|
if 'max_side_len' in params:
|
|
|
|
self.max_side_len = params['max_side_len']
|
|
|
|
else:
|
|
|
|
self.max_side_len = 2400
|
|
|
|
|
2020-06-19 15:54:20 +08:00
|
|
|
def resize_image_type0(self, im):
|
2020-05-10 16:26:57 +08:00
|
|
|
"""
|
|
|
|
resize image to a size multiple of 32 which is required by the network
|
2020-06-19 15:54:20 +08:00
|
|
|
args:
|
|
|
|
img(array): array with shape [h, w, c]
|
|
|
|
return(tuple):
|
|
|
|
img, (ratio_h, ratio_w)
|
2020-05-10 16:26:57 +08:00
|
|
|
"""
|
|
|
|
max_side_len = self.max_side_len
|
|
|
|
h, w, _ = im.shape
|
|
|
|
|
|
|
|
resize_w = w
|
|
|
|
resize_h = h
|
|
|
|
|
|
|
|
# limit the max side
|
|
|
|
if max(resize_h, resize_w) > max_side_len:
|
|
|
|
if resize_h > resize_w:
|
|
|
|
ratio = float(max_side_len) / resize_h
|
|
|
|
else:
|
|
|
|
ratio = float(max_side_len) / resize_w
|
|
|
|
else:
|
|
|
|
ratio = 1.
|
|
|
|
resize_h = int(resize_h * ratio)
|
|
|
|
resize_w = int(resize_w * ratio)
|
|
|
|
if resize_h % 32 == 0:
|
|
|
|
resize_h = resize_h
|
2020-05-13 22:52:22 +08:00
|
|
|
elif resize_h // 32 <= 1:
|
|
|
|
resize_h = 32
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
|
|
|
resize_h = (resize_h // 32 - 1) * 32
|
|
|
|
if resize_w % 32 == 0:
|
|
|
|
resize_w = resize_w
|
2020-05-13 22:52:22 +08:00
|
|
|
elif resize_w // 32 <= 1:
|
|
|
|
resize_w = 32
|
2020-05-10 16:26:57 +08:00
|
|
|
else:
|
|
|
|
resize_w = (resize_w // 32 - 1) * 32
|
2020-06-19 15:54:20 +08:00
|
|
|
try:
|
|
|
|
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
|
|
|
return None, (None, None)
|
|
|
|
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
|
|
|
except:
|
|
|
|
print(im.shape, resize_w, resize_h)
|
|
|
|
sys.exit(0)
|
2020-05-10 16:26:57 +08:00
|
|
|
ratio_h = resize_h / float(h)
|
|
|
|
ratio_w = resize_w / float(w)
|
|
|
|
return im, (ratio_h, ratio_w)
|
|
|
|
|
2020-06-19 15:54:20 +08:00
|
|
|
def resize_image_type1(self, im):
|
|
|
|
resize_h, resize_w = self.image_shape
|
|
|
|
ori_h, ori_w = im.shape[:2] # (h, w, c)
|
|
|
|
im = cv2.resize(im, (int(resize_w), int(resize_h)))
|
|
|
|
ratio_h = float(resize_h) / ori_h
|
|
|
|
ratio_w = float(resize_w) / ori_w
|
|
|
|
return im, (ratio_h, ratio_w)
|
|
|
|
|
2020-05-10 16:26:57 +08:00
|
|
|
def __call__(self, im):
|
2020-06-19 15:54:20 +08:00
|
|
|
if self.resize_type == 0:
|
|
|
|
im, (ratio_h, ratio_w) = self.resize_image_type0(im)
|
|
|
|
else:
|
|
|
|
im, (ratio_h, ratio_w) = self.resize_image_type1(im)
|
2020-05-10 16:26:57 +08:00
|
|
|
img_mean = [0.485, 0.456, 0.406]
|
|
|
|
img_std = [0.229, 0.224, 0.225]
|
|
|
|
im = im[:, :, ::-1].astype(np.float32)
|
|
|
|
im = im / 255
|
|
|
|
im -= img_mean
|
|
|
|
im /= img_std
|
|
|
|
im = im.transpose((2, 0, 1))
|
|
|
|
im = im[np.newaxis, :]
|
|
|
|
return [im, (ratio_h, ratio_w)]
|