2020-10-13 17:13:33 +08:00
|
|
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
|
|
from paddle import optimizer as optim
|
|
|
|
|
|
|
|
|
|
|
|
class Momentum(object):
|
|
|
|
"""
|
|
|
|
Simple Momentum optimizer with velocity state.
|
|
|
|
Args:
|
|
|
|
learning_rate (float|Variable) - The learning rate used to update parameters.
|
|
|
|
Can be a float value or a Variable with one float value as data element.
|
|
|
|
momentum (float) - Momentum factor.
|
|
|
|
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
|
|
|
|
"""
|
|
|
|
|
2020-12-14 12:19:33 +08:00
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
|
|
|
momentum,
|
|
|
|
weight_decay=None,
|
|
|
|
grad_clip=None,
|
|
|
|
**args):
|
2020-10-13 17:13:33 +08:00
|
|
|
super(Momentum, self).__init__()
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.momentum = momentum
|
|
|
|
self.weight_decay = weight_decay
|
2020-12-14 12:19:33 +08:00
|
|
|
self.grad_clip = grad_clip
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
def __call__(self, parameters):
|
|
|
|
opt = optim.Momentum(
|
|
|
|
learning_rate=self.learning_rate,
|
|
|
|
momentum=self.momentum,
|
2020-12-14 12:19:33 +08:00
|
|
|
weight_decay=self.weight_decay,
|
|
|
|
grad_clip=self.grad_clip,
|
|
|
|
parameters=parameters)
|
2020-10-13 17:13:33 +08:00
|
|
|
return opt
|
|
|
|
|
|
|
|
|
|
|
|
class Adam(object):
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate=0.001,
|
|
|
|
beta1=0.9,
|
|
|
|
beta2=0.999,
|
|
|
|
epsilon=1e-08,
|
|
|
|
parameter_list=None,
|
|
|
|
weight_decay=None,
|
|
|
|
grad_clip=None,
|
|
|
|
name=None,
|
|
|
|
lazy_mode=False,
|
|
|
|
**kwargs):
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.beta1 = beta1
|
|
|
|
self.beta2 = beta2
|
|
|
|
self.epsilon = epsilon
|
|
|
|
self.parameter_list = parameter_list
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.weight_decay = weight_decay
|
|
|
|
self.grad_clip = grad_clip
|
|
|
|
self.name = name
|
|
|
|
self.lazy_mode = lazy_mode
|
|
|
|
|
|
|
|
def __call__(self, parameters):
|
|
|
|
opt = optim.Adam(
|
|
|
|
learning_rate=self.learning_rate,
|
|
|
|
beta1=self.beta1,
|
|
|
|
beta2=self.beta2,
|
|
|
|
epsilon=self.epsilon,
|
|
|
|
weight_decay=self.weight_decay,
|
|
|
|
grad_clip=self.grad_clip,
|
|
|
|
name=self.name,
|
|
|
|
lazy_mode=self.lazy_mode,
|
|
|
|
parameters=parameters)
|
|
|
|
return opt
|
|
|
|
|
|
|
|
|
|
|
|
class RMSProp(object):
|
|
|
|
"""
|
|
|
|
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
|
|
|
|
Args:
|
|
|
|
learning_rate (float|Variable) - The learning rate used to update parameters.
|
|
|
|
Can be a float value or a Variable with one float value as data element.
|
|
|
|
momentum (float) - Momentum factor.
|
|
|
|
rho (float) - rho value in equation.
|
|
|
|
epsilon (float) - avoid division by zero, default is 1e-6.
|
|
|
|
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
learning_rate,
|
2020-12-14 12:19:33 +08:00
|
|
|
momentum=0.0,
|
2020-10-13 17:13:33 +08:00
|
|
|
rho=0.95,
|
|
|
|
epsilon=1e-6,
|
|
|
|
weight_decay=None,
|
2020-12-14 12:19:33 +08:00
|
|
|
grad_clip=None,
|
2020-10-13 17:13:33 +08:00
|
|
|
**args):
|
|
|
|
super(RMSProp, self).__init__()
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
self.momentum = momentum
|
|
|
|
self.rho = rho
|
|
|
|
self.epsilon = epsilon
|
|
|
|
self.weight_decay = weight_decay
|
2020-12-14 12:19:33 +08:00
|
|
|
self.grad_clip = grad_clip
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
def __call__(self, parameters):
|
|
|
|
opt = optim.RMSProp(
|
|
|
|
learning_rate=self.learning_rate,
|
|
|
|
momentum=self.momentum,
|
|
|
|
rho=self.rho,
|
|
|
|
epsilon=self.epsilon,
|
|
|
|
weight_decay=self.weight_decay,
|
2020-12-14 12:19:33 +08:00
|
|
|
grad_clip=self.grad_clip,
|
2020-10-13 17:13:33 +08:00
|
|
|
parameters=parameters)
|
|
|
|
return opt
|