PaddleOCR/ppocr/optimizer/optimizer.py

130 lines
4.3 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from paddle import optimizer as optim
class Momentum(object):
"""
Simple Momentum optimizer with velocity state.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
2020-12-14 12:19:33 +08:00
def __init__(self,
learning_rate,
momentum,
weight_decay=None,
grad_clip=None,
**args):
2020-10-13 17:13:33 +08:00
super(Momentum, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.weight_decay = weight_decay
2020-12-14 12:19:33 +08:00
self.grad_clip = grad_clip
2020-10-13 17:13:33 +08:00
def __call__(self, parameters):
opt = optim.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
2020-12-14 12:19:33 +08:00
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=parameters)
2020-10-13 17:13:33 +08:00
return opt
class Adam(object):
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
parameter_list=None,
weight_decay=None,
grad_clip=None,
name=None,
lazy_mode=False,
**kwargs):
self.learning_rate = learning_rate
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.parameter_list = parameter_list
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.grad_clip = grad_clip
self.name = name
self.lazy_mode = lazy_mode
def __call__(self, parameters):
opt = optim.Adam(
learning_rate=self.learning_rate,
beta1=self.beta1,
beta2=self.beta2,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
name=self.name,
lazy_mode=self.lazy_mode,
parameters=parameters)
return opt
class RMSProp(object):
"""
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
rho (float) - rho value in equation.
epsilon (float) - avoid division by zero, default is 1e-6.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self,
learning_rate,
2020-12-14 12:19:33 +08:00
momentum=0.0,
2020-10-13 17:13:33 +08:00
rho=0.95,
epsilon=1e-6,
weight_decay=None,
2020-12-14 12:19:33 +08:00
grad_clip=None,
2020-10-13 17:13:33 +08:00
**args):
super(RMSProp, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.rho = rho
self.epsilon = epsilon
self.weight_decay = weight_decay
2020-12-14 12:19:33 +08:00
self.grad_clip = grad_clip
2020-10-13 17:13:33 +08:00
def __call__(self, parameters):
opt = optim.RMSProp(
learning_rate=self.learning_rate,
momentum=self.momentum,
rho=self.rho,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
2020-12-14 12:19:33 +08:00
grad_clip=self.grad_clip,
2020-10-13 17:13:33 +08:00
parameters=parameters)
return opt