PaddleOCR/tools/infer/utility.py

439 lines
16 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
2020-10-13 17:13:33 +08:00
import os
2020-10-22 18:24:42 +08:00
import sys
2020-05-10 16:26:57 +08:00
import cv2
import numpy as np
2020-05-13 20:29:45 +08:00
import json
from PIL import Image, ImageDraw, ImageFont
import math
2020-12-21 17:10:00 +08:00
from paddle import inference
2020-05-10 16:26:57 +08:00
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
2020-11-17 12:54:24 +08:00
# params for prediction engine
2020-05-10 16:26:57 +08:00
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
2020-12-18 15:27:44 +08:00
parser.add_argument("--use_fp16", type=str2bool, default=False)
2020-12-22 15:57:21 +08:00
parser.add_argument("--gpu_mem", type=int, default=500)
2020-05-10 16:26:57 +08:00
2020-11-17 12:54:24 +08:00
# params for text detector
2020-05-10 16:26:57 +08:00
parser.add_argument("--image_dir", type=str)
parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_dir", type=str)
2020-11-17 17:28:28 +08:00
parser.add_argument("--det_limit_side_len", type=float, default=960)
parser.add_argument("--det_limit_type", type=str, default='max')
2020-05-10 16:26:57 +08:00
2020-11-17 12:54:24 +08:00
# DB parmas
2020-05-10 16:26:57 +08:00
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
2020-11-17 12:54:24 +08:00
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
2020-12-18 15:27:44 +08:00
parser.add_argument("--max_batch_size", type=int, default=10)
2021-02-18 18:45:53 +08:00
parser.add_argument("--use_dilation", type=bool, default=False)
2020-11-17 12:54:24 +08:00
# EAST parmas
2020-05-10 16:26:57 +08:00
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
2020-11-17 12:54:24 +08:00
# SAST parmas
2020-08-17 20:29:28 +08:00
parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
parser.add_argument("--det_sast_polygon", type=bool, default=False)
2020-08-17 20:29:28 +08:00
2020-11-17 12:54:24 +08:00
# params for text recognizer
2020-05-10 16:26:57 +08:00
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument("--rec_model_dir", type=str)
2020-08-16 12:58:05 +08:00
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
2020-12-22 15:57:21 +08:00
parser.add_argument("--rec_batch_num", type=int, default=6)
2020-08-16 13:30:25 +08:00
parser.add_argument("--max_text_length", type=int, default=25)
2020-05-10 16:26:57 +08:00
parser.add_argument(
"--rec_char_dict_path",
type=str,
default="./ppocr/utils/ppocr_keys_v1.txt")
2020-11-17 12:54:24 +08:00
parser.add_argument("--use_space_char", type=str2bool, default=True)
parser.add_argument(
2021-01-26 15:24:13 +08:00
"--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
2020-12-07 12:51:40 +08:00
parser.add_argument("--drop_score", type=float, default=0.5)
2020-11-17 12:54:24 +08:00
2021-03-15 13:58:53 +08:00
# params for e2e
parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
parser.add_argument("--e2e_model_dir", type=str)
parser.add_argument("--e2e_limit_side_len", type=float, default=768)
parser.add_argument("--e2e_limit_type", type=str, default='max')
# PGNet parmas
parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
parser.add_argument(
2021-03-19 11:59:35 +08:00
"--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
2021-03-15 13:58:53 +08:00
parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
2021-03-19 11:59:35 +08:00
parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True)
2021-04-12 18:59:05 +08:00
parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
2021-03-15 13:58:53 +08:00
2020-11-17 12:54:24 +08:00
# params for text classifier
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
parser.add_argument("--cls_model_dir", type=str)
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
parser.add_argument("--label_list", type=list, default=['0', '180'])
2020-12-18 11:11:02 +08:00
parser.add_argument("--cls_batch_num", type=int, default=6)
2020-11-17 12:54:24 +08:00
parser.add_argument("--cls_thresh", type=float, default=0.9)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
2021-04-09 19:50:01 +08:00
parser.add_argument("--use_mp", type=str2bool, default=False)
2021-04-09 18:19:34 +08:00
parser.add_argument("--total_process_num", type=int, default=1)
parser.add_argument("--process_id", type=int, default=0)
2020-05-10 16:26:57 +08:00
return parser.parse_args()
2020-10-22 18:24:42 +08:00
def create_predictor(args, mode, logger):
if mode == "det":
model_dir = args.det_model_dir
elif mode == 'cls':
model_dir = args.cls_model_dir
2021-03-15 13:58:53 +08:00
elif mode == 'rec':
2020-10-22 18:24:42 +08:00
model_dir = args.rec_model_dir
2021-03-15 13:58:53 +08:00
else:
model_dir = args.e2e_model_dir
2020-10-22 18:24:42 +08:00
if model_dir is None:
logger.info("not find {} model file path {}".format(mode, model_dir))
sys.exit(0)
2020-12-09 23:55:38 +08:00
model_file_path = model_dir + "/inference.pdmodel"
params_file_path = model_dir + "/inference.pdiparams"
2020-10-22 18:24:42 +08:00
if not os.path.exists(model_file_path):
logger.info("not find model file path {}".format(model_file_path))
sys.exit(0)
if not os.path.exists(params_file_path):
logger.info("not find params file path {}".format(params_file_path))
sys.exit(0)
2020-12-21 17:10:00 +08:00
config = inference.Config(model_file_path, params_file_path)
2020-10-22 18:24:42 +08:00
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
2020-12-18 15:27:44 +08:00
if args.use_tensorrt:
config.enable_tensorrt_engine(
2020-12-21 17:10:00 +08:00
precision_mode=inference.PrecisionType.Half
if args.use_fp16 else inference.PrecisionType.Float32,
2020-12-18 15:27:44 +08:00
max_batch_size=args.max_batch_size)
2020-10-22 18:24:42 +08:00
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(6)
if args.enable_mkldnn:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
2021-02-18 18:53:28 +08:00
# TODO LDOUBLEV: fix mkldnn bug when bach_size > 1
2021-02-02 21:08:13 +08:00
#config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'})
2020-12-22 15:57:21 +08:00
args.rec_batch_num = 1
2020-10-22 18:24:42 +08:00
2021-03-11 16:44:24 +08:00
# enable memory optim
config.enable_memory_optim()
2020-10-22 18:24:42 +08:00
config.disable_glog_info()
2020-12-21 17:10:00 +08:00
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
2020-10-22 18:24:42 +08:00
2020-12-21 17:10:00 +08:00
# create predictor
predictor = inference.create_predictor(config)
2020-10-22 18:24:42 +08:00
input_names = predictor.get_input_names()
for name in input_names:
2020-12-21 17:10:00 +08:00
input_tensor = predictor.get_input_handle(name)
2020-10-22 18:24:42 +08:00
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
2020-12-21 17:10:00 +08:00
output_tensor = predictor.get_output_handle(output_name)
2020-10-22 18:24:42 +08:00
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors
2021-03-15 13:58:53 +08:00
def draw_e2e_res(dt_boxes, strs, img_path):
src_im = cv2.imread(img_path)
for box, str in zip(dt_boxes, strs):
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
cv2.putText(
src_im,
str,
org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
fontFace=cv2.FONT_HERSHEY_COMPLEX,
fontScale=0.7,
color=(0, 255, 0),
thickness=1)
return src_im
2020-05-28 15:46:05 +08:00
def draw_text_det_res(dt_boxes, img_path):
2020-05-10 16:26:57 +08:00
src_im = cv2.imread(img_path)
for box in dt_boxes:
box = np.array(box).astype(np.int32).reshape(-1, 2)
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
2020-05-15 17:06:43 +08:00
return src_im
2020-05-13 20:29:45 +08:00
2020-05-14 12:08:11 +08:00
def resize_img(img, input_size=600):
"""
2020-05-28 15:46:05 +08:00
resize img and limit the longest side of the image to input_size
2020-05-14 12:08:11 +08:00
"""
img = np.array(img)
im_shape = img.shape
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
2020-10-13 17:13:33 +08:00
img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return img
2020-05-14 12:08:11 +08:00
2020-08-22 19:42:14 +08:00
def draw_ocr(image,
boxes,
txts=None,
scores=None,
drop_score=0.5,
font_path="./doc/simfang.ttf"):
"""
Visualize the results of OCR detection and recognition
args:
2020-05-28 15:46:05 +08:00
image(Image|array): RGB image
boxes(list): boxes with shape(N, 4, 2)
txts(list): the texts
scores(list): txxs corresponding scores
drop_score(float): only scores greater than drop_threshold will be visualized
2020-08-22 19:42:14 +08:00
font_path: the path of font which is used to draw text
return(array):
the visualized img
"""
2020-05-15 14:22:57 +08:00
if scores is None:
scores = [1] * len(boxes)
2020-08-22 19:42:14 +08:00
box_num = len(boxes)
for i in range(box_num):
if scores is not None and (scores[i] < drop_score or
math.isnan(scores[i])):
2020-05-14 12:08:11 +08:00
continue
2020-08-22 19:42:14 +08:00
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
2020-05-28 20:06:26 +08:00
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
2020-08-22 19:42:14 +08:00
if txts is not None:
2020-05-28 20:06:26 +08:00
img = np.array(resize_img(image, input_size=600))
txt_img = text_visual(
2020-08-22 19:42:14 +08:00
txts,
scores,
img_h=img.shape[0],
img_w=600,
threshold=drop_score,
font_path=font_path)
img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
2020-05-28 20:06:26 +08:00
return img
return image
2020-12-07 13:10:12 +08:00
def draw_ocr_box_txt(image,
boxes,
txts,
scores=None,
drop_score=0.5,
font_path="./doc/simfang.ttf"):
h, w = image.height, image.width
img_left = image.copy()
img_right = Image.new('RGB', (w, h), (255, 255, 255))
import random
2020-08-03 17:44:41 +08:00
random.seed(0)
draw_left = ImageDraw.Draw(img_left)
draw_right = ImageDraw.Draw(img_right)
2020-12-07 13:10:12 +08:00
for idx, (box, txt) in enumerate(zip(boxes, txts)):
if scores is not None and scores[idx] < drop_score:
continue
2020-06-30 19:28:29 +08:00
color = (random.randint(0, 255), random.randint(0, 255),
random.randint(0, 255))
draw_left.polygon(box, fill=color)
2020-06-30 19:28:29 +08:00
draw_right.polygon(
[
box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
box[2][1], box[3][0], box[3][1]
],
outline=color)
box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
1])**2)
box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
1])**2)
if box_height > 2 * box_width:
font_size = max(int(box_width * 0.9), 10)
2020-12-07 13:10:12 +08:00
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
cur_y = box[0][1]
for c in txt:
char_size = font.getsize(c)
2020-06-30 19:28:29 +08:00
draw_right.text(
(box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
cur_y += char_size[1]
else:
font_size = max(int(box_height * 0.8), 10)
2020-12-07 13:10:12 +08:00
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
2020-06-30 19:28:29 +08:00
draw_right.text(
[box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
img_left = Image.blend(image, img_left, 0.5)
img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
img_show.paste(img_left, (0, 0, w, h))
img_show.paste(img_right, (w, 0, w * 2, h))
return np.array(img_show)
def str_count(s):
"""
Count the number of Chinese characters,
a single English character and a single number
equal to half the length of Chinese characters.
args:
s(string): the input of string
return(int):
the number of Chinese characters
"""
import string
count_zh = count_pu = 0
s_len = len(s)
en_dg_count = 0
for c in s:
if c in string.ascii_letters or c.isdigit() or c.isspace():
en_dg_count += 1
elif c.isalpha():
count_zh += 1
else:
count_pu += 1
return s_len - math.ceil(en_dg_count / 2)
2020-08-22 19:42:14 +08:00
def text_visual(texts,
scores,
img_h=400,
img_w=600,
threshold=0.,
font_path="./doc/simfang.ttf"):
"""
create new blank img and draw txt on it
args:
texts(list): the text will be draw
scores(list|None): corresponding score of each txt
img_h(int): the height of blank img
img_w(int): the width of blank img
2020-08-22 19:42:14 +08:00
font_path: the path of font which is used to draw text
return(array):
"""
if scores is not None:
assert len(texts) == len(
scores), "The number of txts and corresponding scores must match"
def create_blank_img():
blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
blank_img[:, img_w - 1:] = 0
2020-05-13 20:29:45 +08:00
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
return blank_img, draw_txt
2020-05-13 20:29:45 +08:00
blank_img, draw_txt = create_blank_img()
font_size = 20
txt_color = (0, 0, 0)
2020-08-22 19:42:14 +08:00
font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
gap = font_size + 5
txt_img_list = []
2020-05-28 20:06:26 +08:00
count, index = 1, 0
for idx, txt in enumerate(texts):
index += 1
2020-05-28 15:46:05 +08:00
if scores[idx] < threshold or math.isnan(scores[idx]):
index -= 1
continue
first_line = True
while str_count(txt) >= img_w // font_size - 4:
tmp = txt
txt = tmp[:img_w // font_size - 4]
if first_line:
new_txt = str(index) + ': ' + txt
first_line = False
else:
new_txt = ' ' + txt
2020-05-29 15:23:09 +08:00
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
txt = tmp[img_w // font_size - 4:]
if count >= img_h // gap - 1:
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
2020-05-28 20:06:26 +08:00
count += 1
if first_line:
new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx])
else:
2020-05-28 15:46:05 +08:00
new_txt = " " + txt + " " + '%.3f' % (scores[idx])
2020-05-28 20:06:26 +08:00
draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
# whether add new blank img or not
2020-05-28 20:06:26 +08:00
if count >= img_h // gap - 1 and idx + 1 < len(texts):
txt_img_list.append(np.array(blank_img))
blank_img, draw_txt = create_blank_img()
count = 0
2020-05-28 20:06:26 +08:00
count += 1
txt_img_list.append(np.array(blank_img))
if len(txt_img_list) == 1:
blank_img = np.array(txt_img_list[0])
else:
blank_img = np.concatenate(txt_img_list, axis=1)
return np.array(blank_img)
2020-05-13 20:29:45 +08:00
2020-07-09 20:34:42 +08:00
def base64_to_cv2(b64str):
import base64
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data
def draw_boxes(image, boxes, scores=None, drop_score=0.5):
if scores is None:
scores = [1] * len(boxes)
for (box, score) in zip(boxes, scores):
if score < drop_score:
continue
box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
return image
2020-05-13 20:29:45 +08:00
if __name__ == '__main__':
test_img = "./doc/test_v2"
predict_txt = "./doc/predict.txt"
f = open(predict_txt, 'r')
data = f.readlines()
img_path, anno = data[0].strip().split('\t')
img_name = os.path.basename(img_path)
img_path = os.path.join(test_img, img_name)
image = Image.open(img_path)
data = json.loads(anno)
boxes, txts, scores = [], [], []
for dic in data:
boxes.append(dic['points'])
txts.append(dic['transcription'])
scores.append(round(dic['scores'], 3))
2020-08-22 19:42:14 +08:00
new_img = draw_ocr(image, boxes, txts, scores)
2020-05-13 20:29:45 +08:00
2020-06-23 11:46:45 +08:00
cv2.imwrite(img_name, new_img)