2020-07-09 20:34:42 +08:00
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import copy
import math
import os
import time
from paddle . fluid . core import AnalysisConfig , create_paddle_predictor , PaddleTensor
from paddlehub . common . logger import logger
from paddlehub . module . module import moduleinfo , runnable , serving
from PIL import Image
import cv2
import numpy as np
import paddle . fluid as fluid
import paddlehub as hub
from tools . infer . utility import base64_to_cv2
from tools . infer . predict_rec import TextRecognizer
@moduleinfo (
name = " ocr_rec " ,
version = " 1.0.0 " ,
summary = " ocr recognition service " ,
author = " paddle-dev " ,
author_email = " paddle-dev@baidu.com " ,
type = " cv/text_recognition " )
class OCRRec ( hub . Module ) :
2020-07-12 16:05:28 +08:00
def _initialize ( self , use_gpu = False ) :
2020-07-09 20:34:42 +08:00
"""
initialize with the necessary elements
"""
2020-07-12 16:05:28 +08:00
from ocr_rec . params import read_params
cfg = read_params ( )
cfg . use_gpu = use_gpu
2020-07-09 20:34:42 +08:00
if use_gpu :
try :
_places = os . environ [ " CUDA_VISIBLE_DEVICES " ]
int ( _places [ 0 ] )
print ( " use gpu: " , use_gpu )
print ( " CUDA_VISIBLE_DEVICES: " , _places )
2020-07-12 16:05:28 +08:00
cfg . gpu_mem = 8000
2020-07-09 20:34:42 +08:00
except :
raise RuntimeError (
" Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id. "
)
2020-07-12 16:05:28 +08:00
cfg . ir_optim = True
2020-07-09 20:34:42 +08:00
2020-07-12 16:05:28 +08:00
self . text_recognizer = TextRecognizer ( cfg )
2020-07-09 20:34:42 +08:00
def read_images ( self , paths = [ ] ) :
images = [ ]
for img_path in paths :
assert os . path . isfile (
img_path ) , " The {} isn ' t a valid file. " . format ( img_path )
img = cv2 . imread ( img_path )
if img is None :
logger . info ( " error in loading image: {} " . format ( img_path ) )
continue
images . append ( img )
return images
2020-07-12 16:05:28 +08:00
def predict ( self ,
2020-07-09 20:34:42 +08:00
images = [ ] ,
paths = [ ] ) :
"""
Get the text box in the predicted images .
Args :
images ( list ( numpy . ndarray ) ) : images data , shape of each is [ H , W , C ] . If images not paths
paths ( list [ str ] ) : The paths of images . If paths not images
Returns :
res ( list ) : The result of text detection box and save path of images .
"""
if images != [ ] and isinstance ( images , list ) and paths == [ ] :
predicted_data = images
elif images == [ ] and isinstance ( paths , list ) and paths != [ ] :
predicted_data = self . read_images ( paths )
else :
raise TypeError ( " The input data is inconsistent with expectations. " )
assert predicted_data != [ ] , " There is not any image to be predicted. Please check the input data. "
img_list = [ ]
for img in predicted_data :
if img is None :
continue
img_list . append ( img )
2020-07-13 17:25:30 +08:00
rec_res_final = [ ]
2020-07-09 20:34:42 +08:00
try :
2020-07-12 16:05:28 +08:00
rec_res , predict_time = self . text_recognizer ( img_list )
2020-07-13 17:25:30 +08:00
for dno in range ( len ( rec_res ) ) :
text , score = rec_res [ dno ]
rec_res_final . append (
{
' text ' : text ,
' confidence ' : float ( score ) ,
}
)
2020-07-09 20:34:42 +08:00
except Exception as e :
print ( e )
2020-07-13 17:25:30 +08:00
return [ [ ] ]
return [ rec_res_final ]
2020-07-09 20:34:42 +08:00
@serving
def serving_method ( self , images , * * kwargs ) :
"""
Run as a service .
"""
images_decode = [ base64_to_cv2 ( image ) for image in images ]
2020-07-12 16:05:28 +08:00
results = self . predict ( images_decode , * * kwargs )
2020-07-09 20:34:42 +08:00
return results
if __name__ == ' __main__ ' :
ocr = OCRRec ( )
image_path = [
' ./doc/imgs_words/ch/word_1.jpg ' ,
' ./doc/imgs_words/ch/word_2.jpg ' ,
' ./doc/imgs_words/ch/word_3.jpg ' ,
]
2020-07-12 16:05:28 +08:00
res = ocr . predict ( paths = image_path )
2020-07-09 20:34:42 +08:00
print ( res )