PaddleOCR/ppocr/losses/distillation_loss.py

263 lines
8.9 KiB
Python
Raw Normal View History

2021-06-02 16:31:57 +08:00
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.nn as nn
2021-07-07 09:54:03 +08:00
import numpy as np
import cv2
2021-06-02 16:31:57 +08:00
from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
2021-06-03 13:57:31 +08:00
from .basic_loss import DistanceLoss
2021-07-06 15:56:58 +08:00
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
2021-06-02 16:31:57 +08:00
2021-07-07 09:54:03 +08:00
2021-07-06 15:56:58 +08:00
def _sum_loss(loss_dict):
if "loss" in loss_dict.keys():
return loss_dict
else:
loss_dict["loss"] = 0.
for k, value in loss_dict.items():
if k == "loss":
continue
else:
loss_dict["loss"] += value
return loss_dict
2021-07-06 16:02:01 +08:00
class DistillationDMLLoss(DMLLoss):
2021-06-02 16:31:57 +08:00
"""
"""
2021-07-06 15:56:58 +08:00
def __init__(self,
model_name_pairs=[],
act=None,
key=None,
maps_name=None,
2021-06-02 16:31:57 +08:00
name="loss_dml"):
2021-06-03 21:31:25 +08:00
super().__init__(act=act)
2021-06-03 13:30:43 +08:00
assert isinstance(model_name_pairs, list)
2021-06-02 16:31:57 +08:00
self.key = key
2021-06-03 13:30:43 +08:00
self.model_name_pairs = model_name_pairs
2021-06-03 21:31:25 +08:00
self.name = name
2021-07-07 09:54:03 +08:00
self.maps_name = maps_name
2021-07-06 15:56:58 +08:00
def _check_maps_name(self, maps_name):
if maps_name is None:
return None
elif type(maps_name) == str:
return [maps_name]
elif type(maps_name) == list:
return [maps_name]
else:
return None
def _slice_out(self, outs):
new_outs = {}
for k in self.maps_name:
if k == "thrink_maps":
new_outs[k] = paddle.slice(outs, axes=1, starts=0, ends=1)
elif k == "threshold_maps":
new_outs[k] = paddle.slice(outs, axes=1, starts=1, ends=2)
elif k == "binary_maps":
new_outs[k] = paddle.slice(outs, axes=1, starts=2, ends=3)
else:
continue
2021-06-02 16:31:57 +08:00
def forward(self, predicts, batch):
loss_dict = dict()
2021-06-03 13:30:43 +08:00
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
2021-06-02 16:31:57 +08:00
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
2021-07-06 15:56:58 +08:00
if self.maps_name is None:
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
2021-06-03 13:30:43 +08:00
else:
2021-07-06 15:56:58 +08:00
outs1 = self._slice_out(out1)
outs2 = self._slice_out(out2)
for k in outs1.keys():
loss = super().forward(outs1[k], outs2[k])
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}_{}".format(key, pair[
0], pair[1], map_name, idx)] = loss[key]
else:
loss_dict["{}_{}_{}".format(self.name, map_name,
idx)] = loss
loss_dict = _sum_loss(loss_dict)
2021-06-02 16:31:57 +08:00
return loss_dict
class DistillationCTCLoss(CTCLoss):
def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
super().__init__()
self.model_name_list = model_name_list
self.key = key
self.name = name
def forward(self, predicts, batch):
loss_dict = dict()
2021-06-03 13:30:43 +08:00
for idx, model_name in enumerate(self.model_name_list):
2021-06-02 16:31:57 +08:00
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
2021-06-03 13:30:43 +08:00
for key in loss:
loss_dict["{}_{}_{}".format(self.name, model_name,
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
2021-06-02 16:31:57 +08:00
return loss_dict
2021-06-03 13:57:31 +08:00
2021-07-06 16:13:13 +08:00
class DistillationDBLoss(DBLoss):
def __init__(self,
model_name_list=[],
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="db_loss",
**kwargs):
super().__init__()
self.model_name_list = model_name_list
self.name = name
self.key = None
def forward(self, preicts, batch):
loss_dict = {}
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
for key in loss.keys():
if key == "loss":
continue
name = "{}_{}_{}".format(self.name, model_name, key)
loss_dict[name] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDilaDBLoss(DBLoss):
def __init__(self,
model_name_pairs=[],
2021-07-07 09:54:03 +08:00
key=None,
2021-07-06 16:13:13 +08:00
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="dila_dbloss"):
super().__init__()
self.model_name_pairs = model_name_pairs
self.name = name
2021-07-07 09:54:03 +08:00
self.key = key
2021-07-06 16:13:13 +08:00
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
stu_outs = predicts[pair[0]]
tch_outs = predicts[pair[1]]
if self.key is not None:
stu_preds = stu_outs[self.key]
tch_preds = tch_outs[self.key]
stu_shrink_maps = stu_preds[:, 0, :, :]
stu_binary_maps = stu_preds[:, 2, :, :]
# dilation to teacher prediction
dilation_w = np.array([[1, 1], [1, 1]])
th_shrink_maps = tch_preds[:, 0, :, :]
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
for i in range(th_shrink_maps.shape[0]):
dilate_maps[i] = cv2.dilate(
th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
th_shrink_maps = paddle.to_tensor(dilate_maps)
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
1:]
# calculate the shrink map loss
bce_loss = self.alpha * self.bce_loss(
stu_shrink_maps, th_shrink_maps, label_shrink_mask)
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
label_shrink_mask)
# k = f"{self.name}_{pair[0]}_{pair[1]}"
k = "{}_{}_{}".format(self.name, pair[0], pair[1])
loss_dict[k] = bce_loss + loss_binary_maps
loss_dict = _sum_loss(loss_dict)
2021-07-07 09:54:03 +08:00
return loss_dict
2021-07-06 16:13:13 +08:00
2021-06-03 13:57:31 +08:00
class DistillationDistanceLoss(DistanceLoss):
"""
"""
def __init__(self,
mode="l2",
model_name_pairs=[],
key=None,
name="loss_distance",
**kargs):
2021-06-03 21:31:25 +08:00
super().__init__(mode=mode, **kargs)
2021-06-03 13:57:31 +08:00
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
2021-06-03 21:31:25 +08:00
self.name = name + "_l2"
2021-06-03 13:57:31 +08:00
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
out1 = predicts[pair[0]]
out2 = predicts[pair[1]]
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
key]
else:
2021-06-03 21:31:25 +08:00
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
idx)] = loss
2021-06-03 13:57:31 +08:00
return loss_dict