130 lines
3.0 KiB
YAML
130 lines
3.0 KiB
YAML
|
Global:
|
||
|
use_gpu: true
|
||
|
epoch_num: 1200
|
||
|
log_smooth_window: 20
|
||
|
print_batch_step: 2
|
||
|
save_model_dir: ./output/det_r50_vd/
|
||
|
save_epoch_step: 1200
|
||
|
# evaluation is run every 5000 iterations after the 4000th iteration
|
||
|
eval_batch_step: 8
|
||
|
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
||
|
load_static_weights: True
|
||
|
cal_metric_during_train: False
|
||
|
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||
|
checkpoints:
|
||
|
save_inference_dir:
|
||
|
use_visualdl: True
|
||
|
infer_img: doc/imgs_en/img_10.jpg
|
||
|
save_res_path: ./output/det_db/predicts_db.txt
|
||
|
|
||
|
Optimizer:
|
||
|
name: Adam
|
||
|
beta1: 0.9
|
||
|
beta2: 0.999
|
||
|
learning_rate:
|
||
|
lr: 0.001
|
||
|
regularizer:
|
||
|
name: 'L2'
|
||
|
factor: 0
|
||
|
|
||
|
Architecture:
|
||
|
type: det
|
||
|
algorithm: DB
|
||
|
Transform:
|
||
|
Backbone:
|
||
|
name: ResNet
|
||
|
layers: 50
|
||
|
Neck:
|
||
|
name: FPN
|
||
|
out_channels: 256
|
||
|
Head:
|
||
|
name: DBHead
|
||
|
k: 50
|
||
|
|
||
|
Loss:
|
||
|
name: DBLoss
|
||
|
balance_loss: true
|
||
|
main_loss_type: DiceLoss
|
||
|
alpha: 5
|
||
|
beta: 10
|
||
|
ohem_ratio: 3
|
||
|
|
||
|
PostProcess:
|
||
|
name: DBPostProcess
|
||
|
thresh: 0.3
|
||
|
box_thresh: 0.6
|
||
|
max_candidates: 1000
|
||
|
unclip_ratio: 1.5
|
||
|
|
||
|
Metric:
|
||
|
name: DetMetric
|
||
|
main_indicator: hmean
|
||
|
|
||
|
TRAIN:
|
||
|
dataset:
|
||
|
name: SimpleDataSet
|
||
|
data_dir: ./detection/
|
||
|
file_list:
|
||
|
- ./detection/train_icdar2015_label.txt # dataset1
|
||
|
ratio_list: [1.0]
|
||
|
transforms:
|
||
|
- DecodeImage: # load image
|
||
|
img_mode: BGR
|
||
|
channel_first: False
|
||
|
- DetLabelEncode: # Class handling label
|
||
|
- IaaAugment:
|
||
|
augmenter_args:
|
||
|
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
||
|
- { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
|
||
|
- { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
|
||
|
- EastRandomCropData:
|
||
|
size: [ 640,640 ]
|
||
|
max_tries: 50
|
||
|
keep_ratio: true
|
||
|
- MakeBorderMap:
|
||
|
shrink_ratio: 0.4
|
||
|
thresh_min: 0.3
|
||
|
thresh_max: 0.7
|
||
|
- MakeShrinkMap:
|
||
|
shrink_ratio: 0.4
|
||
|
min_text_size: 8
|
||
|
- NormalizeImage:
|
||
|
scale: 1./255.
|
||
|
mean: [ 0.485, 0.456, 0.406 ]
|
||
|
std: [ 0.229, 0.224, 0.225 ]
|
||
|
order: 'hwc'
|
||
|
- ToCHWImage:
|
||
|
- keepKeys:
|
||
|
keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader will return list in this order
|
||
|
loader:
|
||
|
shuffle: True
|
||
|
drop_last: False
|
||
|
batch_size: 16
|
||
|
num_workers: 8
|
||
|
|
||
|
EVAL:
|
||
|
dataset:
|
||
|
name: SimpleDataSet
|
||
|
data_dir: ./detection/
|
||
|
file_list:
|
||
|
- ./detection/test_icdar2015_label.txt
|
||
|
transforms:
|
||
|
- DecodeImage: # load image
|
||
|
img_mode: BGR
|
||
|
channel_first: False
|
||
|
- DetLabelEncode: # Class handling label
|
||
|
- DetResizeForTest:
|
||
|
image_shape: [736,1280]
|
||
|
- NormalizeImage:
|
||
|
scale: 1./255.
|
||
|
mean: [ 0.485, 0.456, 0.406 ]
|
||
|
std: [ 0.229, 0.224, 0.225 ]
|
||
|
order: 'hwc'
|
||
|
- ToCHWImage:
|
||
|
- keepKeys:
|
||
|
keep_keys: ['image','shape','polys','ignore_tags']
|
||
|
loader:
|
||
|
shuffle: False
|
||
|
drop_last: False
|
||
|
batch_size: 1 # must be 1
|
||
|
num_workers: 8
|