PaddleOCR/ppocr/data/det/random_crop_data.py

156 lines
4.6 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
import random
def is_poly_in_rect(poly, x, y, w, h):
poly = np.array(poly)
if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
return False
if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
return False
return True
def is_poly_outside_rect(poly, x, y, w, h):
poly = np.array(poly)
if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
return True
if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
return True
return False
def split_regions(axis):
regions = []
min_axis = 0
for i in range(1, axis.shape[0]):
if axis[i] != axis[i - 1] + 1:
region = axis[min_axis:i]
min_axis = i
regions.append(region)
return regions
def random_select(axis, max_size):
xx = np.random.choice(axis, size=2)
xmin = np.min(xx)
xmax = np.max(xx)
xmin = np.clip(xmin, 0, max_size - 1)
xmax = np.clip(xmax, 0, max_size - 1)
return xmin, xmax
def region_wise_random_select(regions, max_size):
selected_index = list(np.random.choice(len(regions), 2))
selected_values = []
for index in selected_index:
axis = regions[index]
xx = int(np.random.choice(axis, size=1))
selected_values.append(xx)
xmin = min(selected_values)
xmax = max(selected_values)
return xmin, xmax
def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
h, w, _ = im.shape
h_array = np.zeros(h, dtype=np.int32)
w_array = np.zeros(w, dtype=np.int32)
for points in text_polys:
points = np.round(points, decimals=0).astype(np.int32)
minx = np.min(points[:, 0])
maxx = np.max(points[:, 0])
w_array[minx:maxx] = 1
miny = np.min(points[:, 1])
maxy = np.max(points[:, 1])
h_array[miny:maxy] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return 0, 0, w, h
h_regions = split_regions(h_axis)
w_regions = split_regions(w_axis)
for i in range(max_tries):
if len(w_regions) > 1:
xmin, xmax = region_wise_random_select(w_regions, w)
else:
xmin, xmax = random_select(w_axis, w)
if len(h_regions) > 1:
ymin, ymax = region_wise_random_select(h_regions, h)
else:
ymin, ymax = random_select(h_axis, h)
if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h:
# area too small
continue
num_poly_in_rect = 0
for poly in text_polys:
if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
ymax - ymin):
num_poly_in_rect += 1
break
if num_poly_in_rect > 0:
return xmin, ymin, xmax - xmin, ymax - ymin
return 0, 0, w, h
def RandomCropData(data, size):
max_tries = 10
min_crop_side_ratio = 0.1
require_original_image = False
keep_ratio = True
im = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
texts = data['texts']
all_care_polys = [
text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
]
# 计算crop区域
crop_x, crop_y, crop_w, crop_h = crop_area(im, all_care_polys,
min_crop_side_ratio, max_tries)
# crop 图片 保持比例填充
scale_w = size[0] / crop_w
scale_h = size[1] / crop_h
scale = min(scale_w, scale_h)
h = int(crop_h * scale)
w = int(crop_w * scale)
if keep_ratio:
padimg = np.zeros((size[1], size[0], im.shape[2]), im.dtype)
padimg[:h, :w] = cv2.resize(
im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
img = padimg
else:
img = cv2.resize(im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
tuple(size))
# crop 文本框
text_polys_crop = []
ignore_tags_crop = []
texts_crop = []
for poly, text, tag in zip(text_polys, texts, ignore_tags):
poly = ((poly - (crop_x, crop_y)) * scale).tolist()
if not is_poly_outside_rect(poly, 0, 0, w, h):
text_polys_crop.append(poly)
ignore_tags_crop.append(tag)
texts_crop.append(text)
data['image'] = img
data['polys'] = np.array(text_polys_crop)
data['ignore_tags'] = ignore_tags_crop
data['texts'] = texts_crop
return data