47 lines
1.6 KiB
Python
47 lines
1.6 KiB
Python
|
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
#you may not use this file except in compliance with the License.
|
||
|
#You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
#Unless required by applicable law or agreed to in writing, software
|
||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
#See the License for the specific language governing permissions and
|
||
|
#limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import math
|
||
|
|
||
|
import paddle
|
||
|
import paddle.fluid as fluid
|
||
|
|
||
|
|
||
|
class ClsHead(object):
|
||
|
def __init__(self, params):
|
||
|
super(ClsHead, self).__init__()
|
||
|
self.class_dim = params['class_dim']
|
||
|
|
||
|
def __call__(self, inputs, labels=None, mode=None):
|
||
|
pool = fluid.layers.pool2d(
|
||
|
input=inputs, pool_type='avg', global_pooling=True)
|
||
|
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
|
||
|
|
||
|
out = fluid.layers.fc(
|
||
|
input=pool,
|
||
|
size=self.class_dim,
|
||
|
param_attr=fluid.param_attr.ParamAttr(
|
||
|
name="fc_0.w_0",
|
||
|
initializer=fluid.initializer.Uniform(-stdv, stdv)),
|
||
|
bias_attr=fluid.param_attr.ParamAttr(name="fc_0.b_0"))
|
||
|
|
||
|
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
|
||
|
out_label = fluid.layers.argmax(out, axis=1)
|
||
|
predicts = {'predict': softmax_out, 'decoded_out': out_label}
|
||
|
return predicts
|