PaddleOCR/ppocr/modeling/losses/det_basic_loss.py

117 lines
4.1 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle.fluid as fluid
def BalanceLoss(pred,
gt,
mask,
balance_loss=True,
main_loss_type="DiceLoss",
negative_ratio=3,
return_origin=False,
eps=1e-6):
"""
The BalanceLoss for Differentiable Binarization text detection
args:
pred (variable): predicted feature maps.
gt (variable): ground truth feature maps.
mask (variable): masked maps.
balance_loss (bool): whether balance loss or not, default is True
main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss',
'Euclidean','BCELoss', 'MaskL1Loss'], default is 'DiceLoss'.
negative_ratio (int|float): float, default is 3.
return_origin (bool): whether return unbalanced loss or not, default is False.
eps (float): default is 1e-6.
return: (variable) balanced loss
"""
positive = gt * mask
negative = (1 - gt) * mask
positive_count = fluid.layers.reduce_sum(positive)
positive_count_int = fluid.layers.cast(positive_count, dtype=np.int32)
negative_count = min(
fluid.layers.reduce_sum(negative), positive_count * negative_ratio)
negative_count_int = fluid.layers.cast(negative_count, dtype=np.int32)
if main_loss_type == "CrossEntropy":
loss = fluid.layers.cross_entropy(input=pred, label=gt, soft_label=True)
loss = fluid.layers.reduce_mean(loss)
elif main_loss_type == "Euclidean":
loss = fluid.layers.square(pred - gt)
loss = fluid.layers.reduce_mean(loss)
elif main_loss_type == "DiceLoss":
loss = DiceLoss(pred, gt, mask)
elif main_loss_type == "BCELoss":
loss = fluid.layers.sigmoid_cross_entropy_with_logits(pred, label=gt)
elif main_loss_type == "MaskL1Loss":
loss = MaskL1Loss(pred, gt, mask)
else:
loss_type = [
'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss'
]
raise Exception("main_loss_type in BalanceLoss() can only be one of {}".
format(loss_type))
if not balance_loss:
return loss
positive_loss = positive * loss
negative_loss = negative * loss
negative_loss = fluid.layers.reshape(negative_loss, shape=[-1])
negative_loss, _ = fluid.layers.topk(negative_loss, k=negative_count_int)
balance_loss = (fluid.layers.reduce_sum(positive_loss) +
fluid.layers.reduce_sum(negative_loss)) / (
positive_count + negative_count + eps)
if return_origin:
return balance_loss, loss
return balance_loss
def DiceLoss(pred, gt, mask, weights=None, eps=1e-6):
"""
DiceLoss function.
"""
assert pred.shape == gt.shape
assert pred.shape == mask.shape
if weights is not None:
assert weights.shape == mask.shape
mask = weights * mask
intersection = fluid.layers.reduce_sum(pred * gt * mask)
union = fluid.layers.reduce_sum(pred * mask) + fluid.layers.reduce_sum(
gt * mask) + eps
loss = 1 - 2.0 * intersection / union
assert loss <= 1
return loss
def MaskL1Loss(pred, gt, mask, eps=1e-6):
"""
Mask L1 Loss
"""
loss = fluid.layers.reduce_sum((fluid.layers.abs(pred - gt) * mask)) / (
fluid.layers.reduce_sum(mask) + eps)
loss = fluid.layers.reduce_mean(loss)
return loss