PaddleOCR/tools/program.py

544 lines
22 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import yaml
import os
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
2020-08-15 21:54:59 +08:00
2020-05-10 16:26:57 +08:00
logger = initial_logger()
import paddle.fluid as fluid
import time
from ppocr.utils.stats import TrainingStats
from eval_utils.eval_det_utils import eval_det_run
from eval_utils.eval_rec_utils import eval_rec_run
2020-09-01 13:44:51 +08:00
from eval_utils.eval_cls_utils import eval_cls_run
2020-05-10 16:26:57 +08:00
from ppocr.utils.save_load import save_model
import numpy as np
2020-08-14 16:31:13 +08:00
from ppocr.utils.character import cal_predicts_accuracy, cal_predicts_accuracy_srn, CharacterOps
2020-05-10 16:26:57 +08:00
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument("-c", "--config", help="configuration file to use")
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
args.opt = self._parse_opt(args.opt)
return args
def _parse_opt(self, opts):
config = {}
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split('=')
config[k] = yaml.load(v, Loader=yaml.Loader)
return config
class AttrDict(dict):
"""Single level attribute dict, NOT recursive"""
def __init__(self, **kwargs):
super(AttrDict, self).__init__()
super(AttrDict, self).update(kwargs)
def __getattr__(self, key):
if key in self:
return self[key]
raise AttributeError("object has no attribute '{}'".format(key))
global_config = AttrDict()
2020-07-11 12:14:05 +08:00
default_config = {'Global': {'debug': False, }}
2020-05-10 16:26:57 +08:00
def load_config(file_path):
"""
Load config from yml/yaml file.
Args:
file_path (str): Path of the config file to be loaded.
Returns: global config
"""
2020-07-11 12:14:05 +08:00
merge_config(default_config)
2020-05-10 16:26:57 +08:00
_, ext = os.path.splitext(file_path)
assert ext in ['.yml', '.yaml'], "only support yaml files for now"
merge_config(yaml.load(open(file_path), Loader=yaml.Loader))
assert "reader_yml" in global_config['Global'],\
"absence reader_yml in global"
reader_file_path = global_config['Global']['reader_yml']
_, ext = os.path.splitext(reader_file_path)
assert ext in ['.yml', '.yaml'], "only support yaml files for reader"
merge_config(yaml.load(open(reader_file_path), Loader=yaml.Loader))
return global_config
def merge_config(config):
"""
Merge config into global config.
Args:
config (dict): Config to be merged.
Returns: global config
"""
for key, value in config.items():
if "." not in key:
if isinstance(value, dict) and key in global_config:
global_config[key].update(value)
else:
global_config[key] = value
else:
sub_keys = key.split('.')
2020-06-17 16:11:29 +08:00
assert (
sub_keys[0] in global_config
), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
global_config.keys(), sub_keys[0])
2020-05-10 16:26:57 +08:00
cur = global_config[sub_keys[0]]
for idx, sub_key in enumerate(sub_keys[1:]):
assert (sub_key in cur)
if idx == len(sub_keys) - 2:
cur[sub_key] = value
else:
cur = cur[sub_key]
def check_gpu(use_gpu):
"""
Log error and exit when set use_gpu=true in paddlepaddle
cpu version.
"""
err = "Config use_gpu cannot be set as true while you are " \
"using paddlepaddle cpu version ! \nPlease try: \n" \
"\t1. Install paddlepaddle-gpu to run model on GPU \n" \
"\t2. Set use_gpu as false in config file to run " \
"model on CPU"
try:
if use_gpu and not fluid.is_compiled_with_cuda():
logger.error(err)
sys.exit(1)
except Exception as e:
pass
def build(config, main_prog, startup_prog, mode):
"""
Build a program using a model and an optimizer
1. create feeds
2. create a dataloader
3. create a model
4. create fetchs
5. create an optimizer
Args:
config(dict): config
main_prog(): main program
startup_prog(): startup program
is_train(bool): train or valid
Returns:
dataloader(): a bridge between the model and the data
fetchs(dict): dict of model outputs(included loss and measures)
"""
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
func_infor = config['Architecture']['function']
model = create_module(func_infor)(params=config)
dataloader, outputs = model(mode=mode)
fetch_name_list = list(outputs.keys())
fetch_varname_list = [outputs[v].name for v in fetch_name_list]
opt_loss_name = None
2020-08-14 16:31:13 +08:00
model_average = None
img_loss_name = None
word_loss_name = None
2020-05-10 16:26:57 +08:00
if mode == "train":
opt_loss = outputs['total_loss']
2020-08-14 16:31:13 +08:00
# srn loss
#img_loss = outputs['img_loss']
#word_loss = outputs['word_loss']
#img_loss_name = img_loss.name
#word_loss_name = word_loss.name
2020-05-10 16:26:57 +08:00
opt_params = config['Optimizer']
optimizer = create_module(opt_params['function'])(opt_params)
optimizer.minimize(opt_loss)
opt_loss_name = opt_loss.name
global_lr = optimizer._global_learning_rate()
fetch_name_list.insert(0, "lr")
fetch_varname_list.insert(0, global_lr.name)
2020-08-16 12:53:26 +08:00
if "loss_type" in config["Global"]:
if config['Global']["loss_type"] == 'srn':
model_average = fluid.optimizer.ModelAverage(
config['Global']['average_window'],
min_average_window=config['Global'][
'min_average_window'],
max_average_window=config['Global'][
'max_average_window'])
2020-08-14 16:31:13 +08:00
2020-08-15 12:39:07 +08:00
return (dataloader, fetch_name_list, fetch_varname_list, opt_loss_name,
model_average)
2020-05-10 16:26:57 +08:00
def build_export(config, main_prog, startup_prog):
"""
"""
with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard():
func_infor = config['Architecture']['function']
model = create_module(func_infor)(params=config)
2020-09-03 18:59:44 +08:00
algorithm = config['Global']['algorithm']
if algorithm == "SRN":
2020-09-03 15:51:50 +08:00
image, others, outputs = model(mode='export')
else:
image, outputs = model(mode='export')
fetches_var_name = sorted([name for name in outputs.keys()])
2020-05-15 22:25:37 +08:00
fetches_var = [outputs[name] for name in fetches_var_name]
2020-09-03 18:59:44 +08:00
if algorithm == "SRN":
2020-09-03 15:51:50 +08:00
others_var_names = sorted([name for name in others.keys()])
feeded_var_names = [image.name] + others_var_names
else:
feeded_var_names = [image.name]
2020-05-10 16:26:57 +08:00
target_vars = fetches_var
return feeded_var_names, target_vars, fetches_var_name
2020-09-15 20:17:23 +08:00
def create_multi_devices_program(program, loss_var_name, for_quant=False):
2020-05-10 16:26:57 +08:00
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = False
build_strategy.enable_inplace = True
2020-09-15 20:17:23 +08:00
if for_quant:
build_strategy.fuse_all_reduce_ops = False
2020-05-10 16:26:57 +08:00
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_iteration_per_drop_scope = 1
compile_program = fluid.CompiledProgram(program).with_data_parallel(
loss_name=loss_var_name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
return compile_program
2020-09-15 21:32:14 +08:00
def train_eval_det_run(config,
exe,
train_info_dict,
eval_info_dict,
is_pruning=False):
2020-05-10 16:26:57 +08:00
train_batch_id = 0
log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num']
print_batch_step = config['Global']['print_batch_step']
eval_batch_step = config['Global']['eval_batch_step']
2020-07-07 10:35:17 +08:00
start_eval_step = 0
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
start_eval_step = eval_batch_step[0]
eval_batch_step = eval_batch_step[1]
logger.info(
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
format(start_eval_step, eval_batch_step))
2020-05-10 16:26:57 +08:00
save_epoch_step = config['Global']['save_epoch_step']
save_model_dir = config['Global']['save_model_dir']
if not os.path.exists(save_model_dir):
os.makedirs(save_model_dir)
2020-05-10 16:26:57 +08:00
train_stats = TrainingStats(log_smooth_window,
train_info_dict['fetch_name_list'])
best_eval_hmean = -1
best_batch_id = 0
best_epoch = 0
train_loader = train_info_dict['reader']
for epoch in range(epoch_num):
train_loader.start()
try:
while True:
t1 = time.time()
train_outs = exe.run(
program=train_info_dict['compile_program'],
fetch_list=train_info_dict['fetch_varname_list'],
return_numpy=False)
stats = {}
for tno in range(len(train_outs)):
fetch_name = train_info_dict['fetch_name_list'][tno]
fetch_value = np.mean(np.array(train_outs[tno]))
stats[fetch_name] = fetch_value
t2 = time.time()
train_batch_elapse = t2 - t1
train_stats.update(stats)
2020-07-14 14:52:12 +08:00
if train_batch_id > 0 and train_batch_id \
2020-05-10 16:26:57 +08:00
% print_batch_step == 0:
logs = train_stats.log()
strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
epoch, train_batch_id, logs, train_batch_elapse)
logger.info(strs)
2020-07-14 14:52:12 +08:00
if train_batch_id > start_eval_step and\
(train_batch_id - start_eval_step) % eval_batch_step == 0:
2020-05-10 16:26:57 +08:00
metrics = eval_det_run(exe, config, eval_info_dict, "eval")
hmean = metrics['hmean']
if hmean >= best_eval_hmean:
best_eval_hmean = hmean
best_batch_id = train_batch_id
best_epoch = epoch
save_path = save_model_dir + "/best_accuracy"
2020-09-15 21:32:14 +08:00
if is_pruning:
2020-09-16 19:48:51 +08:00
import paddleslim as slim
2020-09-15 21:32:14 +08:00
slim.prune.save_model(
exe, train_info_dict['train_program'],
save_path)
else:
save_model(train_info_dict['train_program'],
save_path)
2020-05-10 16:26:57 +08:00
strs = 'Test iter: {}, metrics:{}, best_hmean:{:.6f}, best_epoch:{}, best_batch_id:{}'.format(
train_batch_id, metrics, best_eval_hmean, best_epoch,
best_batch_id)
logger.info(strs)
train_batch_id += 1
except fluid.core.EOFException:
train_loader.reset()
2020-05-19 11:29:52 +08:00
if epoch == 0 and save_epoch_step == 1:
2020-05-19 11:15:51 +08:00
save_path = save_model_dir + "/iter_epoch_0"
2020-09-15 21:32:14 +08:00
if is_pruning:
2020-09-16 19:48:51 +08:00
import paddleslim as slim
2020-09-15 21:32:14 +08:00
slim.prune.save_model(exe, train_info_dict['train_program'],
save_path)
else:
save_model(train_info_dict['train_program'], save_path)
2020-05-10 16:26:57 +08:00
if epoch > 0 and epoch % save_epoch_step == 0:
save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
2020-09-15 21:32:14 +08:00
if is_pruning:
2020-09-16 19:48:51 +08:00
import paddleslim as slim
2020-09-15 21:32:14 +08:00
slim.prune.save_model(exe, train_info_dict['train_program'],
save_path)
else:
save_model(train_info_dict['train_program'], save_path)
2020-05-10 16:26:57 +08:00
return
def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
train_batch_id = 0
log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num']
print_batch_step = config['Global']['print_batch_step']
eval_batch_step = config['Global']['eval_batch_step']
2020-07-07 10:35:17 +08:00
start_eval_step = 0
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
start_eval_step = eval_batch_step[0]
eval_batch_step = eval_batch_step[1]
logger.info(
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
format(start_eval_step, eval_batch_step))
2020-05-10 16:26:57 +08:00
save_epoch_step = config['Global']['save_epoch_step']
save_model_dir = config['Global']['save_model_dir']
2020-05-13 16:51:36 +08:00
if not os.path.exists(save_model_dir):
2020-05-13 16:39:39 +08:00
os.makedirs(save_model_dir)
2020-05-10 16:26:57 +08:00
train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
best_eval_acc = -1
best_batch_id = 0
best_epoch = 0
train_loader = train_info_dict['reader']
for epoch in range(epoch_num):
train_loader.start()
try:
while True:
t1 = time.time()
train_outs = exe.run(
program=train_info_dict['compile_program'],
fetch_list=train_info_dict['fetch_varname_list'],
return_numpy=False)
fetch_map = dict(
zip(train_info_dict['fetch_name_list'],
range(len(train_outs))))
loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
lr = np.mean(np.array(train_outs[fetch_map['lr']]))
preds_idx = fetch_map['decoded_out']
preds = np.array(train_outs[preds_idx])
labels_idx = fetch_map['label']
labels = np.array(train_outs[labels_idx])
2020-08-14 16:31:13 +08:00
if config['Global']['loss_type'] != 'srn':
preds_lod = train_outs[preds_idx].lod()[0]
labels_lod = train_outs[labels_idx].lod()[0]
acc, acc_num, img_num = cal_predicts_accuracy(
config['Global']['char_ops'], preds, preds_lod, labels,
labels_lod)
else:
acc, acc_num, img_num = cal_predicts_accuracy_srn(
config['Global']['char_ops'], preds, labels,
config['Global']['max_text_length'])
2020-05-10 16:26:57 +08:00
t2 = time.time()
train_batch_elapse = t2 - t1
stats = {'loss': loss, 'acc': acc}
train_stats.update(stats)
2020-07-07 10:51:50 +08:00
if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
2020-05-10 16:26:57 +08:00
% print_batch_step == 0:
logs = train_stats.log()
strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
epoch, train_batch_id, lr, logs, train_batch_elapse)
logger.info(strs)
if train_batch_id > 0 and\
train_batch_id % eval_batch_step == 0:
2020-08-14 16:31:13 +08:00
model_average = train_info_dict['model_average']
if model_average != None:
model_average.apply(exe)
2020-05-10 16:26:57 +08:00
metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
eval_acc = metrics['avg_acc']
eval_sample_num = metrics['total_sample_num']
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_batch_id = train_batch_id
best_epoch = epoch
save_path = save_model_dir + "/best_accuracy"
save_model(train_info_dict['train_program'], save_path)
strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
train_batch_id, eval_acc, best_eval_acc, best_epoch,
best_batch_id, eval_sample_num)
logger.info(strs)
train_batch_id += 1
except fluid.core.EOFException:
train_loader.reset()
2020-05-19 11:32:40 +08:00
if epoch == 0 and save_epoch_step == 1:
2020-05-19 11:15:51 +08:00
save_path = save_model_dir + "/iter_epoch_0"
save_model(train_info_dict['train_program'], save_path)
2020-05-10 16:26:57 +08:00
if epoch > 0 and epoch % save_epoch_step == 0:
save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
save_model(train_info_dict['train_program'], save_path)
return
2020-08-15 21:54:59 +08:00
2020-08-15 12:39:07 +08:00
2020-09-01 13:44:51 +08:00
def train_eval_cls_run(config, exe, train_info_dict, eval_info_dict):
train_batch_id = 0
log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num']
print_batch_step = config['Global']['print_batch_step']
eval_batch_step = config['Global']['eval_batch_step']
start_eval_step = 0
if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
start_eval_step = eval_batch_step[0]
eval_batch_step = eval_batch_step[1]
logger.info(
"During the training process, after the {}th iteration, an evaluation is run every {} iterations".
format(start_eval_step, eval_batch_step))
save_epoch_step = config['Global']['save_epoch_step']
save_model_dir = config['Global']['save_model_dir']
if not os.path.exists(save_model_dir):
os.makedirs(save_model_dir)
train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
best_eval_acc = -1
best_batch_id = 0
best_epoch = 0
train_loader = train_info_dict['reader']
for epoch in range(epoch_num):
train_loader.start()
try:
while True:
t1 = time.time()
train_outs = exe.run(
program=train_info_dict['compile_program'],
fetch_list=train_info_dict['fetch_varname_list'],
return_numpy=False)
fetch_map = dict(
zip(train_info_dict['fetch_name_list'],
range(len(train_outs))))
loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
lr = np.mean(np.array(train_outs[fetch_map['lr']]))
acc = np.mean(np.array(train_outs[fetch_map['acc']]))
t2 = time.time()
train_batch_elapse = t2 - t1
stats = {'loss': loss, 'acc': acc}
train_stats.update(stats)
if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
% print_batch_step == 0:
logs = train_stats.log()
strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
epoch, train_batch_id, lr, logs, train_batch_elapse)
logger.info(strs)
if train_batch_id > 0 and\
train_batch_id % eval_batch_step == 0:
model_average = train_info_dict['model_average']
if model_average != None:
model_average.apply(exe)
metrics = eval_cls_run(exe, eval_info_dict)
eval_acc = metrics['avg_acc']
eval_sample_num = metrics['total_sample_num']
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_batch_id = train_batch_id
best_epoch = epoch
save_path = save_model_dir + "/best_accuracy"
save_model(train_info_dict['train_program'], save_path)
strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
train_batch_id, eval_acc, best_eval_acc, best_epoch,
best_batch_id, eval_sample_num)
logger.info(strs)
train_batch_id += 1
except fluid.core.EOFException:
train_loader.reset()
if epoch == 0 and save_epoch_step == 1:
save_path = save_model_dir + "/iter_epoch_0"
save_model(train_info_dict['train_program'], save_path)
if epoch > 0 and epoch % save_epoch_step == 0:
save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
save_model(train_info_dict['train_program'], save_path)
return
2020-08-15 21:54:59 +08:00
def preprocess():
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
logger.info(config)
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
check_gpu(use_gpu)
alg = config['Global']['algorithm']
2020-09-03 15:51:50 +08:00
assert alg in [
2020-09-01 13:44:51 +08:00
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS'
2020-09-03 15:51:50 +08:00
]
2020-08-15 12:39:07 +08:00
if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN']:
2020-08-15 21:54:59 +08:00
config['Global']['char_ops'] = CharacterOps(config['Global'])
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
startup_program = fluid.Program()
train_program = fluid.Program()
if alg in ['EAST', 'DB', 'SAST']:
train_alg_type = 'det'
2020-09-01 13:44:51 +08:00
elif alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN']:
2020-08-15 21:54:59 +08:00
train_alg_type = 'rec'
2020-09-01 13:44:51 +08:00
else:
train_alg_type = 'cls'
2020-08-15 21:54:59 +08:00
return startup_program, train_program, place, config, train_alg_type