PaddleOCR/deploy/pdserving/ocr_rpc_server.py

128 lines
4.9 KiB
Python
Raw Normal View History

2020-09-22 12:22:42 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
import cv2
import sys
import numpy as np
import os
import time
import re
import base64
from clas_rpc_server import TextClassifierHelper
from det_rpc_server import TextDetectorHelper
from rec_rpc_server import TextRecognizerHelper
2020-09-22 19:30:26 +08:00
from tools.infer.predict_system import TextSystem, sorted_boxes
2020-09-22 12:22:42 +08:00
import copy
2020-09-23 17:45:37 +08:00
from params import read_params
2020-09-22 12:22:42 +08:00
2020-09-23 17:45:37 +08:00
global_args = read_params()
2020-09-22 12:22:42 +08:00
if global_args.use_gpu:
from paddle_serving_server_gpu.web_service import WebService
else:
from paddle_serving_server.web_service import WebService
class TextSystemHelper(TextSystem):
def __init__(self, args):
self.text_detector = TextDetectorHelper(args)
self.text_recognizer = TextRecognizerHelper(args)
self.use_angle_cls = args.use_angle_cls
if self.use_angle_cls:
self.clas_client = Client()
self.clas_client.load_client_config(
2020-10-29 15:50:26 +08:00
os.path.join(args.cls_client_dir, "serving_client_conf.prototxt")
)
2020-09-22 12:22:42 +08:00
self.clas_client.connect(["127.0.0.1:9294"])
self.text_classifier = TextClassifierHelper(args)
self.det_client = Client()
self.det_client.load_client_config(
2020-10-29 15:50:26 +08:00
os.path.join(args.det_client_dir, "serving_client_conf.prototxt")
)
2020-09-22 12:22:42 +08:00
self.det_client.connect(["127.0.0.1:9293"])
2020-10-12 20:21:31 +08:00
self.fetch = ["save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"]
2020-09-22 12:22:42 +08:00
def preprocess(self, img):
feed, fetch, self.tmp_args = self.text_detector.preprocess(img)
fetch_map = self.det_client.predict(feed, fetch)
outputs = [fetch_map[x] for x in fetch]
dt_boxes = self.text_detector.postprocess(outputs, self.tmp_args)
if dt_boxes is None:
return None, None
img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes)
2020-10-29 15:50:26 +08:00
self.dt_boxes = dt_boxes
2020-09-22 12:22:42 +08:00
for bno in range(len(dt_boxes)):
tmp_box = copy.deepcopy(dt_boxes[bno])
img_crop = self.get_rotate_crop_image(img, tmp_box)
img_crop_list.append(img_crop)
if self.use_angle_cls:
feed, fetch, self.tmp_args = self.text_classifier.preprocess(
img_crop_list)
fetch_map = self.clas_client.predict(feed, fetch)
outputs = [fetch_map[x] for x in self.text_classifier.fetch]
for x in fetch_map.keys():
if ".lod" in x:
self.tmp_args[x] = fetch_map[x]
img_crop_list, _ = self.text_classifier.postprocess(outputs,
self.tmp_args)
feed, fetch, self.tmp_args = self.text_recognizer.preprocess(
img_crop_list)
return feed, self.fetch, self.tmp_args
def postprocess(self, outputs, args):
return self.text_recognizer.postprocess(outputs, args)
class OCRService(WebService):
def init_rec(self):
2020-09-23 17:45:37 +08:00
self.text_system = TextSystemHelper(global_args)
2020-09-22 12:22:42 +08:00
def preprocess(self, feed=[], fetch=[]):
# TODO: to handle batch rec images
data = base64.b64decode(feed[0]["image"].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
feed, fetch, self.tmp_args = self.text_system.preprocess(im)
return feed, fetch
def postprocess(self, feed={}, fetch=[], fetch_map=None):
outputs = [fetch_map[x] for x in self.text_system.fetch]
for x in fetch_map.keys():
if ".lod" in x:
self.tmp_args[x] = fetch_map[x]
rec_res = self.text_system.postprocess(outputs, self.tmp_args)
2020-10-29 15:50:26 +08:00
res = []
for i in range(len(rec_res)):
tmp_res = {
"text_region": self.text_system.dt_boxes[i].tolist(),
"text": rec_res[i][0],
"confidence": float(rec_res[i][1])
}
res.append(tmp_res)
2020-09-22 12:22:42 +08:00
return res
if __name__ == "__main__":
ocr_service = OCRService(name="ocr")
2020-10-29 15:50:26 +08:00
ocr_service.load_model_config(global_args.rec_server_dir)
2020-09-22 12:22:42 +08:00
ocr_service.init_rec()
if global_args.use_gpu:
ocr_service.prepare_server(
workdir="workdir", port=9292, device="gpu", gpuid=0)
else:
ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
ocr_service.run_rpc_service()
ocr_service.run_web_service()