108 lines
2.6 KiB
Go
108 lines
2.6 KiB
Go
|
package ocr
|
||
|
|
||
|
import (
|
||
|
"log"
|
||
|
"os"
|
||
|
"time"
|
||
|
|
||
|
"github.com/LKKlein/gocv"
|
||
|
)
|
||
|
|
||
|
type TextClassifier struct {
|
||
|
*PaddleModel
|
||
|
batchNum int
|
||
|
thresh float64
|
||
|
shape []int
|
||
|
labels []string
|
||
|
}
|
||
|
|
||
|
type ClsResult struct {
|
||
|
Score float32
|
||
|
Label int64
|
||
|
}
|
||
|
|
||
|
func NewTextClassifier(modelDir string, args map[string]interface{}) *TextClassifier {
|
||
|
shapes := []int{3, 48, 192}
|
||
|
if v, ok := args["cls_image_shape"]; ok {
|
||
|
for i, s := range v.([]interface{}) {
|
||
|
shapes[i] = s.(int)
|
||
|
}
|
||
|
}
|
||
|
cls := &TextClassifier{
|
||
|
PaddleModel: NewPaddleModel(args),
|
||
|
batchNum: getInt(args, "cls_batch_num", 30),
|
||
|
thresh: getFloat64(args, "cls_thresh", 0.9),
|
||
|
shape: shapes,
|
||
|
}
|
||
|
if checkModelExists(modelDir) {
|
||
|
home, _ := os.UserHomeDir()
|
||
|
modelDir, _ = downloadModel(home+"/.paddleocr/cls", modelDir)
|
||
|
} else {
|
||
|
log.Panicf("cls model path: %v not exist! Please check!", modelDir)
|
||
|
}
|
||
|
cls.LoadModel(modelDir)
|
||
|
return cls
|
||
|
}
|
||
|
|
||
|
func (cls *TextClassifier) Run(imgs []gocv.Mat) []gocv.Mat {
|
||
|
batch := cls.batchNum
|
||
|
var clsTime int64 = 0
|
||
|
clsout := make([]ClsResult, len(imgs))
|
||
|
srcimgs := make([]gocv.Mat, len(imgs))
|
||
|
c, h, w := cls.shape[0], cls.shape[1], cls.shape[2]
|
||
|
for i := 0; i < len(imgs); i += batch {
|
||
|
j := i + batch
|
||
|
if len(imgs) < j {
|
||
|
j = len(imgs)
|
||
|
}
|
||
|
|
||
|
normImgs := make([]float32, (j-i)*c*h*w)
|
||
|
for k := i; k < j; k++ {
|
||
|
tmp := gocv.NewMat()
|
||
|
imgs[k].CopyTo(&tmp)
|
||
|
srcimgs[k] = tmp
|
||
|
img := clsResize(imgs[k], cls.shape)
|
||
|
data := normPermute(img, []float32{0.5, 0.5, 0.5}, []float32{0.5, 0.5, 0.5}, 255.0)
|
||
|
copy(normImgs[(k-i)*c*h*w:], data)
|
||
|
}
|
||
|
|
||
|
st := time.Now()
|
||
|
cls.input.SetValue(normImgs)
|
||
|
cls.input.Reshape([]int32{int32(j - i), int32(c), int32(h), int32(w)})
|
||
|
|
||
|
cls.predictor.SetZeroCopyInput(cls.input)
|
||
|
cls.predictor.ZeroCopyRun()
|
||
|
cls.predictor.GetZeroCopyOutput(cls.outputs[0])
|
||
|
cls.predictor.GetZeroCopyOutput(cls.outputs[1])
|
||
|
|
||
|
var probout [][]float32
|
||
|
var labelout []int64
|
||
|
if len(cls.outputs[0].Shape()) == 2 {
|
||
|
probout = cls.outputs[0].Value().([][]float32)
|
||
|
} else {
|
||
|
labelout = cls.outputs[0].Value().([]int64)
|
||
|
}
|
||
|
|
||
|
if len(cls.outputs[1].Shape()) == 2 {
|
||
|
probout = cls.outputs[1].Value().([][]float32)
|
||
|
} else {
|
||
|
labelout = cls.outputs[1].Value().([]int64)
|
||
|
}
|
||
|
clsTime += int64(time.Since(st).Milliseconds())
|
||
|
|
||
|
for no, label := range labelout {
|
||
|
score := probout[no][label]
|
||
|
clsout[i+no] = ClsResult{
|
||
|
Score: score,
|
||
|
Label: label,
|
||
|
}
|
||
|
|
||
|
if label%2 == 1 && float64(score) > cls.thresh {
|
||
|
gocv.Rotate(srcimgs[i+no], &srcimgs[i+no], gocv.Rotate180Clockwise)
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
log.Println("cls num: ", len(clsout), ", cls time elapse: ", clsTime, "ms")
|
||
|
return srcimgs
|
||
|
}
|