144 lines
4.9 KiB
Python
144 lines
4.9 KiB
Python
|
# Copyright (c) <2015-Present> Tzutalin
|
||
|
# Copyright (C) 2013 MIT, Computer Science and Artificial Intelligence Laboratory. Bryan Russell, Antonio Torralba,
|
||
|
# William T. Freeman. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||
|
# associated documentation files (the "Software"), to deal in the Software without restriction, including without
|
||
|
# limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
|
||
|
# Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||
|
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
|
||
|
# the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
||
|
# NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||
|
# SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
||
|
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
# THE SOFTWARE.
|
||
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf8 -*-
|
||
|
import json
|
||
|
from pathlib import Path
|
||
|
|
||
|
from libs.constants import DEFAULT_ENCODING
|
||
|
import os
|
||
|
|
||
|
JSON_EXT = '.json'
|
||
|
ENCODE_METHOD = DEFAULT_ENCODING
|
||
|
|
||
|
|
||
|
class CreateMLWriter:
|
||
|
def __init__(self, foldername, filename, imgsize, shapes, outputfile, databasesrc='Unknown', localimgpath=None):
|
||
|
self.foldername = foldername
|
||
|
self.filename = filename
|
||
|
self.databasesrc = databasesrc
|
||
|
self.imgsize = imgsize
|
||
|
self.boxlist = []
|
||
|
self.localimgpath = localimgpath
|
||
|
self.verified = False
|
||
|
self.shapes = shapes
|
||
|
self.outputfile = outputfile
|
||
|
|
||
|
def write(self):
|
||
|
if os.path.isfile(self.outputfile):
|
||
|
with open(self.outputfile, "r") as file:
|
||
|
input_data = file.read()
|
||
|
outputdict = json.loads(input_data)
|
||
|
else:
|
||
|
outputdict = []
|
||
|
|
||
|
outputimagedict = {
|
||
|
"image": self.filename,
|
||
|
"annotations": []
|
||
|
}
|
||
|
|
||
|
for shape in self.shapes:
|
||
|
points = shape["points"]
|
||
|
|
||
|
x1 = points[0][0]
|
||
|
y1 = points[0][1]
|
||
|
x2 = points[1][0]
|
||
|
y2 = points[2][1]
|
||
|
|
||
|
height, width, x, y = self.calculate_coordinates(x1, x2, y1, y2)
|
||
|
|
||
|
shapedict = {
|
||
|
"label": shape["label"],
|
||
|
"coordinates": {
|
||
|
"x": x,
|
||
|
"y": y,
|
||
|
"width": width,
|
||
|
"height": height
|
||
|
}
|
||
|
}
|
||
|
outputimagedict["annotations"].append(shapedict)
|
||
|
|
||
|
# check if image already in output
|
||
|
exists = False
|
||
|
for i in range(0, len(outputdict)):
|
||
|
if outputdict[i]["image"] == outputimagedict["image"]:
|
||
|
exists = True
|
||
|
outputdict[i] = outputimagedict
|
||
|
break
|
||
|
|
||
|
if not exists:
|
||
|
outputdict.append(outputimagedict)
|
||
|
|
||
|
Path(self.outputfile).write_text(json.dumps(outputdict), ENCODE_METHOD)
|
||
|
|
||
|
def calculate_coordinates(self, x1, x2, y1, y2):
|
||
|
if x1 < x2:
|
||
|
xmin = x1
|
||
|
xmax = x2
|
||
|
else:
|
||
|
xmin = x2
|
||
|
xmax = x1
|
||
|
if y1 < y2:
|
||
|
ymin = y1
|
||
|
ymax = y2
|
||
|
else:
|
||
|
ymin = y2
|
||
|
ymax = y1
|
||
|
width = xmax - xmin
|
||
|
if width < 0:
|
||
|
width = width * -1
|
||
|
height = ymax - ymin
|
||
|
# x and y from center of rect
|
||
|
x = xmin + width / 2
|
||
|
y = ymin + height / 2
|
||
|
return height, width, x, y
|
||
|
|
||
|
|
||
|
class CreateMLReader:
|
||
|
def __init__(self, jsonpath, filepath):
|
||
|
self.jsonpath = jsonpath
|
||
|
self.shapes = []
|
||
|
self.verified = False
|
||
|
self.filename = filepath.split("/")[-1:][0]
|
||
|
try:
|
||
|
self.parse_json()
|
||
|
except ValueError:
|
||
|
print("JSON decoding failed")
|
||
|
|
||
|
def parse_json(self):
|
||
|
with open(self.jsonpath, "r") as file:
|
||
|
inputdata = file.read()
|
||
|
|
||
|
outputdict = json.loads(inputdata)
|
||
|
self.verified = True
|
||
|
|
||
|
if len(self.shapes) > 0:
|
||
|
self.shapes = []
|
||
|
for image in outputdict:
|
||
|
if image["image"] == self.filename:
|
||
|
for shape in image["annotations"]:
|
||
|
self.add_shape(shape["label"], shape["coordinates"])
|
||
|
|
||
|
def add_shape(self, label, bndbox):
|
||
|
xmin = bndbox["x"] - (bndbox["width"] / 2)
|
||
|
ymin = bndbox["y"] - (bndbox["height"] / 2)
|
||
|
|
||
|
xmax = bndbox["x"] + (bndbox["width"] / 2)
|
||
|
ymax = bndbox["y"] + (bndbox["height"] / 2)
|
||
|
|
||
|
points = [(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax)]
|
||
|
self.shapes.append((label, points, None, None, True))
|
||
|
|
||
|
def get_shapes(self):
|
||
|
return self.shapes
|