The icdar2015 dataset can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
Decompress the downloaded dataset to the working directory, assuming it is decompressed under PaddleOCR/train_data/. In addition, PaddleOCR organizes many scattered annotation files into two separate annotation files for train and test respectively, which can be downloaded by wget:
The image annotation after json.dumps() encoding is a list containing multiple dictionaries. The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.
First download the pretrained model. The detection model of PaddleOCR currently supports two backbones, namely MobileNetV3 and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures) to replace backbone according to your needs.
You can also use the `-o` parameter to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
If you expect to load trained model and continue the training again, you can specify the `Global.checkpoints` parameter as the model path to be loaded.
**Note**:The priority of Global.checkpoints is higher than the priority of Global.pretrain_weights, that is, when two parameters are specified at the same time, the model specified by Global.checkpoints will be loaded first. If the model path specified by Global.checkpoints is wrong, the one specified by Global.pretrain_weights will be loaded.
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean.
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
When evaluating, set post-processing parameters box_thresh=0.6, unclip_ratio=1.5. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set Global.checkpoints to point to the saved parameter file.