2020-10-13 17:13:33 +08:00
|
|
|
"""
|
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import six
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
class DecodeImage(object):
|
|
|
|
""" decode image """
|
|
|
|
|
|
|
|
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
|
|
|
|
self.img_mode = img_mode
|
|
|
|
self.channel_first = channel_first
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
img = data['image']
|
|
|
|
if six.PY2:
|
|
|
|
assert type(img) is str and len(
|
|
|
|
img) > 0, "invalid input 'img' in DecodeImage"
|
|
|
|
else:
|
|
|
|
assert type(img) is bytes and len(
|
|
|
|
img) > 0, "invalid input 'img' in DecodeImage"
|
|
|
|
img = np.frombuffer(img, dtype='uint8')
|
|
|
|
img = cv2.imdecode(img, 1)
|
2020-12-09 14:59:04 +08:00
|
|
|
if img is None:
|
|
|
|
return None
|
2020-10-13 17:13:33 +08:00
|
|
|
if self.img_mode == 'GRAY':
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
|
|
elif self.img_mode == 'RGB':
|
|
|
|
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
|
|
|
|
img = img[:, :, ::-1]
|
|
|
|
|
|
|
|
if self.channel_first:
|
|
|
|
img = img.transpose((2, 0, 1))
|
|
|
|
|
|
|
|
data['image'] = img
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
class NormalizeImage(object):
|
|
|
|
""" normalize image such as substract mean, divide std
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
|
|
|
|
if isinstance(scale, str):
|
|
|
|
scale = eval(scale)
|
|
|
|
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
|
|
|
mean = mean if mean is not None else [0.485, 0.456, 0.406]
|
|
|
|
std = std if std is not None else [0.229, 0.224, 0.225]
|
|
|
|
|
|
|
|
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
|
|
|
|
self.mean = np.array(mean).reshape(shape).astype('float32')
|
|
|
|
self.std = np.array(std).reshape(shape).astype('float32')
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
img = data['image']
|
|
|
|
from PIL import Image
|
|
|
|
if isinstance(img, Image.Image):
|
|
|
|
img = np.array(img)
|
|
|
|
|
|
|
|
assert isinstance(img,
|
|
|
|
np.ndarray), "invalid input 'img' in NormalizeImage"
|
|
|
|
data['image'] = (
|
|
|
|
img.astype('float32') * self.scale - self.mean) / self.std
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
class ToCHWImage(object):
|
|
|
|
""" convert hwc image to chw image
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
img = data['image']
|
|
|
|
from PIL import Image
|
|
|
|
if isinstance(img, Image.Image):
|
|
|
|
img = np.array(img)
|
|
|
|
data['image'] = img.transpose((2, 0, 1))
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
2020-11-04 20:43:27 +08:00
|
|
|
class KeepKeys(object):
|
2020-10-13 17:13:33 +08:00
|
|
|
def __init__(self, keep_keys, **kwargs):
|
|
|
|
self.keep_keys = keep_keys
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
data_list = []
|
|
|
|
for key in self.keep_keys:
|
|
|
|
data_list.append(data[key])
|
|
|
|
return data_list
|
|
|
|
|
|
|
|
|
|
|
|
class DetResizeForTest(object):
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super(DetResizeForTest, self).__init__()
|
|
|
|
self.resize_type = 0
|
|
|
|
if 'image_shape' in kwargs:
|
|
|
|
self.image_shape = kwargs['image_shape']
|
|
|
|
self.resize_type = 1
|
|
|
|
if 'limit_side_len' in kwargs:
|
|
|
|
self.limit_side_len = kwargs['limit_side_len']
|
|
|
|
self.limit_type = kwargs.get('limit_type', 'min')
|
2020-12-09 14:45:25 +08:00
|
|
|
if 'resize_long' in kwargs:
|
|
|
|
self.resize_type = 2
|
|
|
|
self.resize_long = kwargs.get('resize_long', 960)
|
2020-10-13 17:13:33 +08:00
|
|
|
else:
|
|
|
|
self.limit_side_len = 736
|
|
|
|
self.limit_type = 'min'
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
img = data['image']
|
2020-12-09 14:45:25 +08:00
|
|
|
src_h, src_w, _ = img.shape
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
if self.resize_type == 0:
|
2020-12-09 14:45:25 +08:00
|
|
|
# img, shape = self.resize_image_type0(img)
|
|
|
|
img, [ratio_h, ratio_w] = self.resize_image_type0(img)
|
|
|
|
elif self.resize_type == 2:
|
|
|
|
img, [ratio_h, ratio_w] = self.resize_image_type2(img)
|
2020-10-13 17:13:33 +08:00
|
|
|
else:
|
2020-12-09 14:45:25 +08:00
|
|
|
# img, shape = self.resize_image_type1(img)
|
|
|
|
img, [ratio_h, ratio_w] = self.resize_image_type1(img)
|
2020-10-13 17:13:33 +08:00
|
|
|
data['image'] = img
|
2020-12-09 14:45:25 +08:00
|
|
|
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
2020-10-13 17:13:33 +08:00
|
|
|
return data
|
|
|
|
|
|
|
|
def resize_image_type1(self, img):
|
|
|
|
resize_h, resize_w = self.image_shape
|
|
|
|
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
2020-12-09 14:45:25 +08:00
|
|
|
ratio_h = float(resize_h) / ori_h
|
|
|
|
ratio_w = float(resize_w) / ori_w
|
2020-10-13 17:13:33 +08:00
|
|
|
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
2020-12-09 14:45:25 +08:00
|
|
|
# return img, np.array([ori_h, ori_w])
|
|
|
|
return img, [ratio_h, ratio_w]
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
def resize_image_type0(self, img):
|
|
|
|
"""
|
|
|
|
resize image to a size multiple of 32 which is required by the network
|
|
|
|
args:
|
|
|
|
img(array): array with shape [h, w, c]
|
|
|
|
return(tuple):
|
|
|
|
img, (ratio_h, ratio_w)
|
|
|
|
"""
|
|
|
|
limit_side_len = self.limit_side_len
|
|
|
|
h, w, _ = img.shape
|
|
|
|
|
|
|
|
# limit the max side
|
|
|
|
if self.limit_type == 'max':
|
|
|
|
if max(h, w) > limit_side_len:
|
|
|
|
if h > w:
|
|
|
|
ratio = float(limit_side_len) / h
|
|
|
|
else:
|
|
|
|
ratio = float(limit_side_len) / w
|
|
|
|
else:
|
|
|
|
ratio = 1.
|
|
|
|
else:
|
|
|
|
if min(h, w) < limit_side_len:
|
|
|
|
if h < w:
|
|
|
|
ratio = float(limit_side_len) / h
|
|
|
|
else:
|
|
|
|
ratio = float(limit_side_len) / w
|
|
|
|
else:
|
|
|
|
ratio = 1.
|
|
|
|
resize_h = int(h * ratio)
|
|
|
|
resize_w = int(w * ratio)
|
|
|
|
|
|
|
|
resize_h = int(round(resize_h / 32) * 32)
|
|
|
|
resize_w = int(round(resize_w / 32) * 32)
|
|
|
|
|
|
|
|
try:
|
|
|
|
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
|
|
|
return None, (None, None)
|
|
|
|
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
|
|
|
except:
|
|
|
|
print(img.shape, resize_w, resize_h)
|
|
|
|
sys.exit(0)
|
2020-12-09 14:45:25 +08:00
|
|
|
ratio_h = resize_h / float(h)
|
|
|
|
ratio_w = resize_w / float(w)
|
|
|
|
# return img, np.array([h, w])
|
|
|
|
return img, [ratio_h, ratio_w]
|
2020-12-09 20:30:50 +08:00
|
|
|
|
2020-12-09 14:45:25 +08:00
|
|
|
def resize_image_type2(self, img):
|
|
|
|
h, w, _ = img.shape
|
|
|
|
|
|
|
|
resize_w = w
|
|
|
|
resize_h = h
|
|
|
|
|
|
|
|
# Fix the longer side
|
|
|
|
if resize_h > resize_w:
|
|
|
|
ratio = float(self.resize_long) / resize_h
|
|
|
|
else:
|
|
|
|
ratio = float(self.resize_long) / resize_w
|
|
|
|
|
|
|
|
resize_h = int(resize_h * ratio)
|
|
|
|
resize_w = int(resize_w * ratio)
|
|
|
|
|
|
|
|
max_stride = 128
|
|
|
|
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
|
|
|
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
|
|
|
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
|
|
|
ratio_h = resize_h / float(h)
|
|
|
|
ratio_w = resize_w / float(w)
|
|
|
|
|
|
|
|
return img, [ratio_h, ratio_w]
|