2020-05-10 16:26:57 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import os, sys
|
|
|
|
from ppocr.utils.utility import initial_logger
|
|
|
|
logger = initial_logger()
|
|
|
|
from paddle.fluid.core import PaddleTensor
|
|
|
|
from paddle.fluid.core import AnalysisConfig
|
|
|
|
from paddle.fluid.core import create_paddle_predictor
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2020-05-13 20:29:45 +08:00
|
|
|
import json
|
|
|
|
from PIL import Image, ImageDraw, ImageFont
|
2020-05-10 16:26:57 +08:00
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
def str2bool(v):
|
|
|
|
return v.lower() in ("true", "t", "1")
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
#params for prediction engine
|
|
|
|
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
|
|
|
parser.add_argument("--ir_optim", type=str2bool, default=True)
|
|
|
|
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
|
|
|
|
parser.add_argument("--gpu_mem", type=int, default=8000)
|
|
|
|
|
|
|
|
#params for text detector
|
|
|
|
parser.add_argument("--image_dir", type=str)
|
|
|
|
parser.add_argument("--det_algorithm", type=str, default='DB')
|
|
|
|
parser.add_argument("--det_model_dir", type=str)
|
|
|
|
parser.add_argument("--det_max_side_len", type=float, default=960)
|
|
|
|
|
|
|
|
#DB parmas
|
|
|
|
parser.add_argument("--det_db_thresh", type=float, default=0.3)
|
|
|
|
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
|
|
|
|
|
|
|
|
#EAST parmas
|
|
|
|
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
|
|
|
|
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
|
|
|
|
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
|
|
|
|
|
|
|
|
#params for text recognizer
|
|
|
|
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
|
|
|
|
parser.add_argument("--rec_model_dir", type=str)
|
|
|
|
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
|
|
|
|
parser.add_argument("--rec_char_type", type=str, default='ch')
|
|
|
|
parser.add_argument(
|
|
|
|
"--rec_char_dict_path",
|
|
|
|
type=str,
|
|
|
|
default="./ppocr/utils/ppocr_keys_v1.txt")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def create_predictor(args, mode):
|
|
|
|
if mode == "det":
|
|
|
|
model_dir = args.det_model_dir
|
|
|
|
else:
|
|
|
|
model_dir = args.rec_model_dir
|
|
|
|
|
|
|
|
if model_dir is None:
|
|
|
|
logger.info("not find {} model file path {}".format(mode, model_dir))
|
|
|
|
sys.exit(0)
|
|
|
|
model_file_path = model_dir + "/model"
|
|
|
|
params_file_path = model_dir + "/params"
|
|
|
|
if not os.path.exists(model_file_path):
|
|
|
|
logger.info("not find model file path {}".format(model_file_path))
|
|
|
|
sys.exit(0)
|
|
|
|
if not os.path.exists(params_file_path):
|
|
|
|
logger.info("not find params file path {}".format(params_file_path))
|
|
|
|
sys.exit(0)
|
|
|
|
|
|
|
|
config = AnalysisConfig(model_file_path, params_file_path)
|
|
|
|
|
|
|
|
if args.use_gpu:
|
|
|
|
config.enable_use_gpu(args.gpu_mem, 0)
|
|
|
|
else:
|
|
|
|
config.disable_gpu()
|
|
|
|
|
|
|
|
config.disable_glog_info()
|
2020-05-11 15:33:54 +08:00
|
|
|
|
2020-05-10 16:26:57 +08:00
|
|
|
# use zero copy
|
|
|
|
config.switch_use_feed_fetch_ops(False)
|
|
|
|
predictor = create_paddle_predictor(config)
|
|
|
|
input_names = predictor.get_input_names()
|
|
|
|
input_tensor = predictor.get_input_tensor(input_names[0])
|
|
|
|
output_names = predictor.get_output_names()
|
|
|
|
output_tensors = []
|
|
|
|
for output_name in output_names:
|
|
|
|
output_tensor = predictor.get_output_tensor(output_name)
|
|
|
|
output_tensors.append(output_tensor)
|
|
|
|
return predictor, input_tensor, output_tensors
|
|
|
|
|
|
|
|
|
|
|
|
def draw_text_det_res(dt_boxes, img_path):
|
|
|
|
src_im = cv2.imread(img_path)
|
|
|
|
for box in dt_boxes:
|
|
|
|
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
|
|
|
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
|
|
|
img_name_pure = img_path.split("/")[-1]
|
|
|
|
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
2020-05-13 20:29:45 +08:00
|
|
|
|
|
|
|
|
2020-05-14 12:08:11 +08:00
|
|
|
def resize_img(img, input_size=600):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
img = np.array(img)
|
|
|
|
im_shape = img.shape
|
|
|
|
im_size_min = np.min(im_shape[0:2])
|
|
|
|
im_size_max = np.max(im_shape[0:2])
|
|
|
|
im_scale = float(input_size) / float(im_size_max)
|
|
|
|
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
|
|
|
|
return im
|
|
|
|
|
|
|
|
|
|
|
|
def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
|
2020-05-13 20:29:45 +08:00
|
|
|
from PIL import Image, ImageDraw, ImageFont
|
|
|
|
|
|
|
|
w, h = image.size
|
|
|
|
img = image.copy()
|
|
|
|
draw = ImageDraw.Draw(img)
|
|
|
|
|
2020-05-14 12:08:11 +08:00
|
|
|
for (box, score) in zip(boxes, scores):
|
|
|
|
if score < drop_score:
|
|
|
|
continue
|
2020-05-13 20:29:45 +08:00
|
|
|
draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
|
|
|
|
draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
|
|
|
|
draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
|
|
|
|
draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
|
2020-05-14 12:08:11 +08:00
|
|
|
draw.line(
|
|
|
|
[(box[0][0] - 1, box[0][1] + 1), (box[1][0] - 1, box[1][1] + 1)],
|
|
|
|
fill='red')
|
|
|
|
draw.line(
|
|
|
|
[(box[1][0] - 1, box[1][1] + 1), (box[2][0] - 1, box[2][1] + 1)],
|
|
|
|
fill='red')
|
|
|
|
draw.line(
|
|
|
|
[(box[2][0] - 1, box[2][1] + 1), (box[3][0] - 1, box[3][1] + 1)],
|
|
|
|
fill='red')
|
|
|
|
draw.line(
|
|
|
|
[(box[3][0] - 1, box[3][1] + 1), (box[0][0] - 1, box[0][1] + 1)],
|
|
|
|
fill='red')
|
2020-05-13 20:29:45 +08:00
|
|
|
|
|
|
|
if draw_txt:
|
|
|
|
txt_color = (0, 0, 0)
|
2020-05-14 12:08:11 +08:00
|
|
|
img = np.array(resize_img(img))
|
|
|
|
_h = img.shape[0]
|
|
|
|
blank_img = np.ones(shape=[_h, 600], dtype=np.int8) * 255
|
2020-05-13 20:29:45 +08:00
|
|
|
blank_img = Image.fromarray(blank_img).convert("RGB")
|
|
|
|
draw_txt = ImageDraw.Draw(blank_img)
|
|
|
|
|
2020-05-14 12:08:11 +08:00
|
|
|
font_size = 20
|
|
|
|
gap = 20
|
|
|
|
title = "index text score"
|
|
|
|
font = ImageFont.truetype(
|
|
|
|
"./doc/simfang.ttf", font_size, encoding="utf-8")
|
|
|
|
|
|
|
|
draw_txt.text((20, 0), title, txt_color, font=font)
|
|
|
|
count = 0
|
|
|
|
for idx, txt in enumerate(txts):
|
|
|
|
if scores[idx] < drop_score:
|
|
|
|
continue
|
2020-05-13 20:29:45 +08:00
|
|
|
font = ImageFont.truetype(
|
2020-05-14 12:08:11 +08:00
|
|
|
"./doc/simfang.ttf", font_size, encoding="utf-8")
|
|
|
|
new_txt = str(count) + ': ' + txt + ' ' + str(scores[count])
|
|
|
|
draw_txt.text(
|
|
|
|
(20, gap * (count + 1)), new_txt, txt_color, font=font)
|
|
|
|
count += 1
|
2020-05-13 20:29:45 +08:00
|
|
|
img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_img = "./doc/test_v2"
|
|
|
|
predict_txt = "./doc/predict.txt"
|
|
|
|
f = open(predict_txt, 'r')
|
|
|
|
data = f.readlines()
|
|
|
|
img_path, anno = data[0].strip().split('\t')
|
|
|
|
img_name = os.path.basename(img_path)
|
|
|
|
img_path = os.path.join(test_img, img_name)
|
|
|
|
image = Image.open(img_path)
|
|
|
|
|
|
|
|
data = json.loads(anno)
|
|
|
|
boxes, txts, scores = [], [], []
|
|
|
|
for dic in data:
|
|
|
|
boxes.append(dic['points'])
|
|
|
|
txts.append(dic['transcription'])
|
|
|
|
scores.append(round(dic['scores'], 3))
|
|
|
|
|
|
|
|
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
|
|
|
|
|
|
|
|
cv2.imwrite(img_name, new_img)
|