PaddleOCR/tools/infer/utility.py

203 lines
7.1 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
2020-05-13 20:29:45 +08:00
import json
from PIL import Image, ImageDraw, ImageFont
2020-05-10 16:26:57 +08:00
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
#params for prediction engine
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
#params for text detector
parser.add_argument("--image_dir", type=str)
parser.add_argument("--det_algorithm", type=str, default='DB')
parser.add_argument("--det_model_dir", type=str)
parser.add_argument("--det_max_side_len", type=float, default=960)
#DB parmas
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
#EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)
#params for text recognizer
parser.add_argument("--rec_algorithm", type=str, default='CRNN')
parser.add_argument("--rec_model_dir", type=str)
parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
parser.add_argument("--rec_char_type", type=str, default='ch')
parser.add_argument(
"--rec_char_dict_path",
type=str,
default="./ppocr/utils/ppocr_keys_v1.txt")
return parser.parse_args()
def create_predictor(args, mode):
if mode == "det":
model_dir = args.det_model_dir
else:
model_dir = args.rec_model_dir
if model_dir is None:
logger.info("not find {} model file path {}".format(mode, model_dir))
sys.exit(0)
model_file_path = model_dir + "/model"
params_file_path = model_dir + "/params"
if not os.path.exists(model_file_path):
logger.info("not find model file path {}".format(model_file_path))
sys.exit(0)
if not os.path.exists(params_file_path):
logger.info("not find params file path {}".format(params_file_path))
sys.exit(0)
config = AnalysisConfig(model_file_path, params_file_path)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
else:
config.disable_gpu()
config.disable_glog_info()
2020-05-11 15:33:54 +08:00
2020-05-10 16:26:57 +08:00
# use zero copy
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
input_names = predictor.get_input_names()
input_tensor = predictor.get_input_tensor(input_names[0])
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors
def draw_text_det_res(dt_boxes, img_path):
src_im = cv2.imread(img_path)
for box in dt_boxes:
box = np.array(box).astype(np.int32).reshape(-1, 2)
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
img_name_pure = img_path.split("/")[-1]
cv2.imwrite("./output/%s" % img_name_pure, src_im)
2020-05-13 20:29:45 +08:00
2020-05-14 12:08:11 +08:00
def resize_img(img, input_size=600):
"""
"""
img = np.array(img)
im_shape = img.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
return im
def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
2020-05-13 20:29:45 +08:00
from PIL import Image, ImageDraw, ImageFont
w, h = image.size
img = image.copy()
draw = ImageDraw.Draw(img)
2020-05-14 12:08:11 +08:00
for (box, score) in zip(boxes, scores):
if score < drop_score:
continue
2020-05-13 20:29:45 +08:00
draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
2020-05-14 12:08:11 +08:00
draw.line(
[(box[0][0] - 1, box[0][1] + 1), (box[1][0] - 1, box[1][1] + 1)],
fill='red')
draw.line(
[(box[1][0] - 1, box[1][1] + 1), (box[2][0] - 1, box[2][1] + 1)],
fill='red')
draw.line(
[(box[2][0] - 1, box[2][1] + 1), (box[3][0] - 1, box[3][1] + 1)],
fill='red')
draw.line(
[(box[3][0] - 1, box[3][1] + 1), (box[0][0] - 1, box[0][1] + 1)],
fill='red')
2020-05-13 20:29:45 +08:00
if draw_txt:
txt_color = (0, 0, 0)
2020-05-14 12:08:11 +08:00
img = np.array(resize_img(img))
_h = img.shape[0]
blank_img = np.ones(shape=[_h, 600], dtype=np.int8) * 255
2020-05-13 20:29:45 +08:00
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
2020-05-14 12:08:11 +08:00
font_size = 20
gap = 20
title = "index text score"
font = ImageFont.truetype(
"./doc/simfang.ttf", font_size, encoding="utf-8")
draw_txt.text((20, 0), title, txt_color, font=font)
count = 0
for idx, txt in enumerate(txts):
if scores[idx] < drop_score:
continue
2020-05-13 20:29:45 +08:00
font = ImageFont.truetype(
2020-05-14 12:08:11 +08:00
"./doc/simfang.ttf", font_size, encoding="utf-8")
new_txt = str(count) + ': ' + txt + ' ' + str(scores[count])
draw_txt.text(
(20, gap * (count + 1)), new_txt, txt_color, font=font)
count += 1
2020-05-13 20:29:45 +08:00
img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
return img
if __name__ == '__main__':
test_img = "./doc/test_v2"
predict_txt = "./doc/predict.txt"
f = open(predict_txt, 'r')
data = f.readlines()
img_path, anno = data[0].strip().split('\t')
img_name = os.path.basename(img_path)
img_path = os.path.join(test_img, img_name)
image = Image.open(img_path)
data = json.loads(anno)
boxes, txts, scores = [], [], []
for dic in data:
boxes.append(dic['points'])
txts.append(dic['transcription'])
scores.append(round(dic['scores'], 3))
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
cv2.imwrite(img_name, new_img)