PaddleOCR/ppocr/postprocess/rec_postprocess.py

460 lines
18 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
2021-01-26 15:53:49 +08:00
import string
2020-10-13 17:13:33 +08:00
import paddle
from paddle.nn import functional as F
class BaseRecLabelDecode(object):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='ch',
use_space_char=False):
2020-12-09 14:45:25 +08:00
support_character_type = [
2021-01-26 15:53:49 +08:00
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
2021-01-26 15:24:13 +08:00
'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
2021-04-14 15:38:27 +08:00
'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
2020-12-09 14:45:25 +08:00
]
2020-10-13 17:13:33 +08:00
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
2020-12-09 16:48:27 +08:00
support_character_type, character_type)
2020-10-13 17:13:33 +08:00
2020-12-30 16:15:49 +08:00
self.beg_str = "sos"
self.end_str = "eos"
2020-10-13 17:13:33 +08:00
if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
2021-01-26 15:53:49 +08:00
elif character_type == "EN_symbol":
2021-01-26 15:24:13 +08:00
# same with ASTER setting (use 94 char).
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
elif character_type in support_character_type:
2021-06-03 16:39:31 +08:00
self.character_str = []
2021-01-26 15:24:13 +08:00
assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
character_type)
2020-10-13 17:13:33 +08:00
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
2021-06-03 16:39:31 +08:00
self.character_str.append(line)
2020-10-13 17:13:33 +08:00
if use_space_char:
2021-06-03 16:39:31 +08:00
self.character_str.append(" ")
2020-10-13 17:13:33 +08:00
dict_character = list(self.character_str)
2021-01-26 15:24:13 +08:00
2020-10-13 17:13:33 +08:00
else:
raise NotImplementedError
self.character_type = character_type
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
2020-10-13 17:13:33 +08:00
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if text_index[batch_idx][idx] in ignored_tokens:
continue
if is_remove_duplicate:
# only for predict
2020-10-13 17:13:33 +08:00
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
batch_idx][idx]:
continue
char_list.append(self.character[int(text_index[batch_idx][
idx])])
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list)))
2020-10-13 17:13:33 +08:00
return result_list
def get_ignored_tokens(self):
return [0] # for ctc blank
class CTCLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(CTCLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
2020-11-09 18:19:42 +08:00
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
2020-10-13 17:13:33 +08:00
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
2021-01-20 18:33:42 +08:00
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
2020-10-13 17:13:33 +08:00
if label is None:
return text
label = self.decode(label)
2020-10-13 17:13:33 +08:00
return text, label
def add_special_char(self, dict_character):
dict_character = ['blank'] + dict_character
return dict_character
class AttnLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(AttnLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
def add_special_char(self, dict_character):
2021-01-29 11:15:03 +08:00
self.beg_str = "sos"
self.end_str = "eos"
dict_character = dict_character
dict_character = [self.beg_str] + dict_character + [self.end_str]
2020-10-13 17:13:33 +08:00
return dict_character
2021-02-01 14:27:56 +08:00
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
[beg_idx, end_idx] = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if text_index[batch_idx][idx] in ignored_tokens:
continue
if int(text_index[batch_idx][idx]) == int(end_idx):
break
if is_remove_duplicate:
# only for predict
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
batch_idx][idx]:
continue
char_list.append(self.character[int(text_index[batch_idx][
idx])])
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list)))
return result_list
2021-01-29 11:15:03 +08:00
def __call__(self, preds, label=None, *args, **kwargs):
"""
2020-10-13 17:13:33 +08:00
text = self.decode(text)
2021-01-29 11:15:03 +08:00
if label is None:
return text
else:
label = self.decode(label, is_remove_duplicate=False)
return text, label
"""
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
2021-02-01 14:27:56 +08:00
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
2021-01-29 11:15:03 +08:00
if label is None:
return text
2021-02-01 14:27:56 +08:00
label = self.decode(label, is_remove_duplicate=False)
2021-01-29 11:15:03 +08:00
return text, label
2020-10-13 17:13:33 +08:00
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
2020-12-09 14:45:25 +08:00
return idx
2020-12-30 16:15:49 +08:00
class SRNLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self,
character_dict_path=None,
character_type='en',
use_space_char=False,
**kwargs):
super(SRNLabelDecode, self).__init__(character_dict_path,
character_type, use_space_char)
2021-04-27 12:12:19 +08:00
self.max_text_length = kwargs.get('max_text_length', 25)
2020-12-30 16:15:49 +08:00
def __call__(self, preds, label=None, *args, **kwargs):
pred = preds['predict']
char_num = len(self.character_str) + 2
if isinstance(pred, paddle.Tensor):
pred = pred.numpy()
pred = np.reshape(pred, [-1, char_num])
preds_idx = np.argmax(pred, axis=1)
preds_prob = np.max(pred, axis=1)
2021-04-27 12:12:19 +08:00
preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
2020-12-30 16:15:49 +08:00
2021-04-27 12:12:19 +08:00
preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
2020-12-30 16:15:49 +08:00
2021-01-22 11:15:56 +08:00
text = self.decode(preds_idx, preds_prob)
2020-12-30 16:15:49 +08:00
if label is None:
2021-02-01 14:32:14 +08:00
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
2020-12-30 16:15:49 +08:00
return text
2021-01-22 11:15:56 +08:00
label = self.decode(label)
2020-12-30 16:15:49 +08:00
return text, label
2021-02-01 14:32:14 +08:00
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
2020-12-30 16:15:49 +08:00
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
if text_index[batch_idx][idx] in ignored_tokens:
continue
if is_remove_duplicate:
# only for predict
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
batch_idx][idx]:
continue
char_list.append(self.character[int(text_index[batch_idx][
idx])])
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list)))
return result_list
def add_special_char(self, dict_character):
dict_character = dict_character + [self.beg_str, self.end_str]
return dict_character
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx
2021-06-03 16:39:31 +08:00
class TableLabelDecode(object):
""" """
def __init__(self,
max_text_length,
max_elem_length,
max_cell_num,
character_dict_path,
**kwargs):
self.max_text_length = max_text_length
self.max_elem_length = max_elem_length
self.max_cell_num = max_cell_num
list_character, list_elem = self.load_char_elem_dict(character_dict_path)
list_character = self.add_special_char(list_character)
list_elem = self.add_special_char(list_elem)
self.dict_character = {}
self.dict_idx_character = {}
for i, char in enumerate(list_character):
self.dict_idx_character[i] = char
self.dict_character[char] = i
self.dict_elem = {}
self.dict_idx_elem = {}
for i, elem in enumerate(list_elem):
self.dict_idx_elem[i] = elem
self.dict_elem[elem] = i
def load_char_elem_dict(self, character_dict_path):
list_character = []
list_elem = []
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
substr = lines[0].decode('utf-8').strip("\n").split("\t")
character_num = int(substr[0])
elem_num = int(substr[1])
for cno in range(1, 1 + character_num):
character = lines[cno].decode('utf-8').strip("\n")
list_character.append(character)
for eno in range(1 + character_num, 1 + character_num + elem_num):
elem = lines[eno].decode('utf-8').strip("\n")
list_elem.append(elem)
return list_character, list_elem
def add_special_char(self, list_character):
self.beg_str = "sos"
self.end_str = "eos"
list_character = [self.beg_str] + list_character + [self.end_str]
return list_character
def get_sp_tokens(self):
char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
char_end_idx = self.get_beg_end_flag_idx('end', 'char')
elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
elem_char_idx1 = self.dict_elem['<td>']
elem_char_idx2 = self.dict_elem['<td']
sp_tokens = np.array([char_beg_idx, char_end_idx, elem_beg_idx,
elem_end_idx, elem_char_idx1, elem_char_idx2, self.max_text_length,
self.max_elem_length, self.max_cell_num])
return sp_tokens
def __call__(self, preds):
structure_probs = preds['structure_probs']
loc_preds = preds['loc_preds']
if isinstance(structure_probs,paddle.Tensor):
structure_probs = structure_probs.numpy()
if isinstance(loc_preds,paddle.Tensor):
loc_preds = loc_preds.numpy()
structure_idx = structure_probs.argmax(axis=2)
structure_probs = structure_probs.max(axis=2)
structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(structure_idx,
structure_probs, 'elem')
res_html_code_list = []
res_loc_list = []
batch_num = len(structure_str)
for bno in range(batch_num):
res_loc = []
for sno in range(len(structure_str[bno])):
text = structure_str[bno][sno]
if text in ['<td>', '<td']:
pos = structure_pos[bno][sno]
res_loc.append(loc_preds[bno, pos])
res_html_code = ''.join(structure_str[bno])
res_loc = np.array(res_loc)
res_html_code_list.append(res_html_code)
res_loc_list.append(res_loc)
return {'res_html_code': res_html_code_list, 'res_loc': res_loc_list, 'res_score_list': result_score_list,
'res_elem_idx_list': result_elem_idx_list,'structure_str_list':structure_str}
def decode(self, text_index, structure_probs, char_or_elem):
"""convert text-label into text-index.
"""
if char_or_elem == "char":
max_len = self.max_text_length
current_dict = self.dict_idx_character
else:
max_len = self.max_elem_length
current_dict = self.dict_idx_elem
ignored_tokens = self.get_ignored_tokens('elem')
beg_idx, end_idx = ignored_tokens
# select_td_tokens = []
# select_span_tokens = []
# for elem in self.dict_elem:
# # if elem == '<td>' or elem == '<td' or elem == '<tr>'\
# # or 'rowspan' in elem or 'colspan' in elem:
# if elem == '<td>' or elem == '<td' or elem == '<tr>':
# select_td_tokens.append(self.dict_elem[elem])
# if 'rowspan' in elem or 'colspan' in elem:
# select_span_tokens.append(self.dict_elem[elem])
result_list = []
result_pos_list = []
result_score_list = []
result_elem_idx_list = []
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
elem_pos_list = []
elem_idx_list = []
score_list = []
for idx in range(len(text_index[batch_idx])):
tmp_elem_idx = int(text_index[batch_idx][idx])
if idx > 0 and tmp_elem_idx == end_idx:
break
if tmp_elem_idx in ignored_tokens:
continue
# if tmp_elem_idx in select_td_tokens:
# total_td_score += structure_probs[batch_idx, idx]
# total_td_num += 1
# if tmp_elem_idx in select_span_tokens:
# total_span_score += structure_probs[batch_idx, idx]
# total_span_num += 1
char_list.append(current_dict[tmp_elem_idx])
elem_pos_list.append(idx)
score_list.append(structure_probs[batch_idx, idx])
elem_idx_list.append(tmp_elem_idx)
result_list.append(char_list)
result_pos_list.append(elem_pos_list)
result_score_list.append(score_list)
result_elem_idx_list.append(elem_idx_list)
return result_list, result_pos_list, result_score_list, result_elem_idx_list
def get_ignored_tokens(self, char_or_elem):
beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
if char_or_elem == "char":
if beg_or_end == "beg":
idx = self.dict_character[self.beg_str]
elif beg_or_end == "end":
idx = self.dict_character[self.end_str]
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
% beg_or_end
elif char_or_elem == "elem":
if beg_or_end == "beg":
idx = self.dict_elem[self.beg_str]
elif beg_or_end == "end":
idx = self.dict_elem[self.end_str]
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
% beg_or_end
else:
assert False, "Unsupport type %s in char_or_elem" \
% char_or_elem
return idx