58 lines
1.5 KiB
YAML
58 lines
1.5 KiB
YAML
|
Global:
|
||
|
algorithm: DB
|
||
|
use_gpu: true
|
||
|
epoch_num: 1200
|
||
|
log_smooth_window: 20
|
||
|
print_batch_step: 2
|
||
|
save_model_dir: ./output/det_r_18_vd_db/
|
||
|
save_epoch_step: 200
|
||
|
eval_batch_step: [3000, 2000]
|
||
|
train_batch_size_per_card: 8
|
||
|
test_batch_size_per_card: 1
|
||
|
image_shape: [3, 640, 640]
|
||
|
reader_yml: ./configs/det/det_db_icdar15_reader.yml
|
||
|
pretrain_weights: ./pretrain_models/ResNet18_vd_pretrained/
|
||
|
save_res_path: ./output/det_r18_vd_db/predicts_db.txt
|
||
|
checkpoints:
|
||
|
save_inference_dir:
|
||
|
|
||
|
Architecture:
|
||
|
function: ppocr.modeling.architectures.det_model,DetModel
|
||
|
|
||
|
Backbone:
|
||
|
function: ppocr.modeling.backbones.det_resnet_vd,ResNet
|
||
|
layers: 18
|
||
|
|
||
|
Head:
|
||
|
function: ppocr.modeling.heads.det_db_head,DBHead
|
||
|
model_name: large
|
||
|
k: 50
|
||
|
inner_channels: 256
|
||
|
out_channels: 2
|
||
|
|
||
|
Loss:
|
||
|
function: ppocr.modeling.losses.det_db_loss,DBLoss
|
||
|
balance_loss: true
|
||
|
main_loss_type: DiceLoss
|
||
|
alpha: 5
|
||
|
beta: 10
|
||
|
ohem_ratio: 3
|
||
|
|
||
|
Optimizer:
|
||
|
function: ppocr.optimizer,AdamDecay
|
||
|
base_lr: 0.001
|
||
|
beta1: 0.9
|
||
|
beta2: 0.999
|
||
|
decay:
|
||
|
function: cosine_decay_warmup
|
||
|
step_each_epoch: 32
|
||
|
total_epoch: 1200
|
||
|
|
||
|
PostProcess:
|
||
|
function: ppocr.postprocess.db_postprocess,DBPostProcess
|
||
|
thresh: 0.3
|
||
|
box_thresh: 0.6
|
||
|
max_candidates: 1000
|
||
|
unclip_ratio: 1.5
|
||
|
|