2020-10-13 17:49:16 +08:00
< a name = "Algorithm_introduction" > < / a >
## Algorithm introduction
2020-12-15 13:24:54 +08:00
This tutorial lists the text detection algorithms and text recognition algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets** . It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCR v2.0 models list ](./models_list_en.md ).
2020-10-13 17:49:16 +08:00
- [1. Text Detection Algorithm ](#TEXTDETECTIONALGORITHM )
- [2. Text Recognition Algorithm ](#TEXTRECOGNITIONALGORITHM )
< a name = "TEXTDETECTIONALGORITHM" > < / a >
### 1. Text Detection Algorithm
PaddleOCR open source text detection algorithms list:
2020-12-20 08:28:52 +08:00
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[2]
- [x] DB([paper](https://arxiv.org/abs/1911.08947))[1]
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
2020-10-13 17:49:16 +08:00
On the ICDAR2015 dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
2020-12-15 22:49:13 +08:00
| --- | --- | --- | --- | --- | --- |
2021-01-25 11:35:53 +08:00
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
2020-12-15 22:11:02 +08:00
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
2021-01-08 19:30:33 +08:00
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
2020-10-13 17:49:16 +08:00
On Total-Text dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
2020-12-15 22:49:13 +08:00
| --- | --- | --- | --- | --- | --- |
2021-01-08 19:30:33 +08:00
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
2020-10-13 17:49:16 +08:00
**Note: ** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive ](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw ) (download code: 2bpi).
2020-12-15 23:11:38 +08:00
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction ](./detection_en.md )
2020-10-13 17:49:16 +08:00
< a name = "TEXTRECOGNITIONALGORITHM" > < / a >
### 2. Text Recognition Algorithm
PaddleOCR open-source text recognition algorithms list:
2020-12-20 08:28:52 +08:00
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
2021-01-20 18:34:39 +08:00
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
2020-12-20 08:28:52 +08:00
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
2021-01-29 15:08:58 +08:00
- [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5]
2020-10-13 17:49:16 +08:00
Refer to [DTRB ](https://arxiv.org/abs/1904.01906 ), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|Model|Backbone|Avg Accuracy|Module combination|Download link|
2021-01-20 18:22:53 +08:00
|---|---|---|---|---|
2020-12-15 22:11:02 +08:00
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
2021-01-20 18:22:53 +08:00
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
2021-01-29 15:08:58 +08:00
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|
2020-12-15 23:11:05 +08:00
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction ](./recognition_en.md )