PaddleOCR/ppocr/data/imaug/copy_paste.py

187 lines
7.0 KiB
Python
Raw Normal View History

2021-06-30 10:20:08 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2021-06-30 10:18:48 +08:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import cv2
import random
import numpy as np
from PIL import Image
from shapely.geometry import Polygon
from ppocr.data.imaug.iaa_augment import IaaAugment
from ppocr.data.imaug.random_crop_data import is_poly_outside_rect
def get_rotate_crop_image(img, points):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
class CopyPaste(object):
def __init__(self, objects_paste_ratio=0.2, limit_paste=True, **kwargs):
self.ext_data_num = 1
self.objects_paste_ratio = objects_paste_ratio
self.limit_paste = limit_paste
augmenter_args = [{'type': 'Resize', 'args': {'size': [0.5, 3]}}]
self.aug = IaaAugment(augmenter_args)
def __call__(self, data):
src_img = data['image']
src_polys = data['polys'].tolist()
src_ignores = data['ignore_tags'].tolist()
ext_data = data['ext_data'][0]
ext_image = ext_data['image']
ext_polys = ext_data['polys']
ext_ignores = ext_data['ignore_tags']
indexs = [i for i in range(len(ext_ignores)) if not ext_ignores[i]]
select_num = max(
1, min(int(self.objects_paste_ratio * len(ext_polys)), 30))
random.shuffle(indexs)
select_idxs = indexs[:select_num]
select_polys = ext_polys[select_idxs]
select_ignores = ext_ignores[select_idxs]
src_img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)
ext_image = cv2.cvtColor(ext_image, cv2.COLOR_BGR2RGB)
src_img = Image.fromarray(src_img).convert('RGBA')
for poly, tag in zip(select_polys, select_ignores):
box_img = get_rotate_crop_image(ext_image, poly)
src_img, box = self.paste_img(src_img, box_img, src_polys)
if box is not None:
src_polys.append(box)
src_ignores.append(tag)
src_img = cv2.cvtColor(np.array(src_img), cv2.COLOR_RGB2BGR)
h, w = src_img.shape[:2]
src_polys = np.array(src_polys)
src_polys[:, :, 0] = np.clip(src_polys[:, :, 0], 0, w)
src_polys[:, :, 1] = np.clip(src_polys[:, :, 1], 0, h)
data['image'] = src_img
data['polys'] = src_polys
data['ignore_tags'] = np.array(src_ignores)
return data
def paste_img(self, src_img, box_img, src_polys):
box_img_pil = Image.fromarray(box_img).convert('RGBA')
src_w, src_h = src_img.size
box_w, box_h = box_img_pil.size
if box_w > src_w or box_h > src_h:
return src_img, None
angle = np.random.randint(0, 360)
box = np.array([[[0, 0], [box_w, 0], [box_w, box_h], [0, box_h]]])
box = rotate_bbox(box_img, box, angle)[0]
paste_x, paste_y = self.select_coord(src_polys, box, src_w - box_w,
src_h - box_h)
if paste_x is None:
return src_img, None
box[:, 0] += paste_x
box[:, 1] += paste_y
box_img_pil = box_img_pil.rotate(angle, expand=1)
r, g, b, A = box_img_pil.split()
src_img.paste(box_img_pil, (paste_x, paste_y), mask=A)
return src_img, box
def select_coord(self, src_polys, box, endx, endy):
if self.limit_paste:
xmin, ymin, xmax, ymax = box[:, 0].min(), box[:, 1].min(
), box[:, 0].max(), box[:, 1].max()
for _ in range(50):
paste_x = random.randint(0, endx)
paste_y = random.randint(0, endy)
xmin1 = xmin + paste_x
xmax1 = xmax + paste_x
ymin1 = ymin + paste_y
ymax1 = ymax + paste_y
num_poly_in_rect = 0
for poly in src_polys:
if not is_poly_outside_rect(poly, xmax1, ymin1,
xmax1 - xmin1, ymax1 - ymin1):
num_poly_in_rect += 1
break
if num_poly_in_rect == 0:
return paste_x, paste_y
return None, None
else:
paste_x = random.randint(0, endx)
paste_y = random.randint(0, endy)
return paste_x, paste_y
def get_union(pD, pG):
return Polygon(pD).union(Polygon(pG)).area
def get_intersection_over_union(pD, pG):
return get_intersection(pD, pG) / get_union(pD, pG)
def get_intersection(pD, pG):
return Polygon(pD).intersection(Polygon(pG)).area
def rotate_bbox(img, text_polys, angle, scale=1):
w = img.shape[1]
h = img.shape[0]
rangle = np.deg2rad(angle)
nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w))
nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w))
rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale)
rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0]))
rot_mat[0, 2] += rot_move[0]
rot_mat[1, 2] += rot_move[1]
2021-06-30 10:37:43 +08:00
# ---------------------- rotate box ----------------------
2021-06-30 10:18:48 +08:00
rot_text_polys = list()
for bbox in text_polys:
point1 = np.dot(rot_mat, np.array([bbox[0, 0], bbox[0, 1], 1]))
point2 = np.dot(rot_mat, np.array([bbox[1, 0], bbox[1, 1], 1]))
point3 = np.dot(rot_mat, np.array([bbox[2, 0], bbox[2, 1], 1]))
point4 = np.dot(rot_mat, np.array([bbox[3, 0], bbox[3, 1], 1]))
rot_text_polys.append([point1, point2, point3, point4])
return np.array(rot_text_polys, dtype=np.float32)