PaddleOCR/tools/infer/predict_system.py

162 lines
6.1 KiB
Python
Raw Normal View History

2020-05-10 16:26:57 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
2020-06-12 13:49:24 +08:00
import tools.infer.utility as utility
2020-05-10 16:26:57 +08:00
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
2020-06-12 13:49:24 +08:00
import tools.infer.predict_det as predict_det
import tools.infer.predict_rec as predict_rec
2020-05-10 16:26:57 +08:00
import copy
import numpy as np
import math
import time
2020-05-14 12:08:11 +08:00
from ppocr.utils.utility import get_image_file_list
from PIL import Image
from tools.infer.utility import draw_ocr
from tools.infer.utility import draw_ocr_box_txt
2020-05-10 16:26:57 +08:00
class TextSystem(object):
def __init__(self, args):
self.text_detector = predict_det.TextDetector(args)
self.text_recognizer = predict_rec.TextRecognizer(args)
def get_rotate_crop_image(self, img, points):
'''
2020-05-10 16:26:57 +08:00
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
img_crop_width = int(max(np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(max(np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0],
[img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
2020-05-10 16:26:57 +08:00
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(img, M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
2020-05-10 16:26:57 +08:00
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
def print_draw_crop_rec_res(self, img_crop_list, rec_res):
bbox_num = len(img_crop_list)
for bno in range(bbox_num):
cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
print(bno, rec_res[bno])
def __call__(self, img):
ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img)
print("dt_boxes num : {}, elapse : {}".format(len(dt_boxes), elapse))
2020-05-10 16:26:57 +08:00
if dt_boxes is None:
return None, None
img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes)
2020-05-10 16:26:57 +08:00
for bno in range(len(dt_boxes)):
tmp_box = copy.deepcopy(dt_boxes[bno])
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop)
rec_res, elapse = self.text_recognizer(img_crop_list)
print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse))
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
2020-05-10 16:26:57 +08:00
return dt_boxes, rec_res
def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
2020-05-14 13:49:28 +08:00
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)
for i in range(num_boxes - 1):
if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
tmp = _boxes[i]
_boxes[i] = _boxes[i + 1]
_boxes[i + 1] = tmp
return _boxes
def main(args):
2020-05-14 12:08:11 +08:00
image_file_list = get_image_file_list(args.image_dir)
2020-05-10 16:26:57 +08:00
text_sys = TextSystem(args)
2020-05-14 12:08:11 +08:00
is_visualize = True
2020-07-14 14:35:18 +08:00
tackle_img_num = 0
2020-05-10 16:26:57 +08:00
for image_file in image_file_list:
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
starttime = time.time()
2020-07-14 14:35:18 +08:00
tackle_img_num += 1
2020-07-14 14:39:00 +08:00
if not args.use_gpu and args.enable_mkldnn and tackle_img_num % 30 == 0:
2020-07-14 14:35:18 +08:00
text_sys = TextSystem(args)
2020-05-10 16:26:57 +08:00
dt_boxes, rec_res = text_sys(img)
elapse = time.time() - starttime
print("Predict time of %s: %.3fs" % (image_file, elapse))
dt_num = len(dt_boxes)
dt_boxes_final = []
for dno in range(dt_num):
text, score = rec_res[dno]
2020-05-14 12:08:11 +08:00
if score >= 0.5:
2020-05-10 16:26:57 +08:00
text_str = "%s, %.3f" % (text, score)
print(text_str)
dt_boxes_final.append(dt_boxes[dno])
2020-05-14 12:08:11 +08:00
if is_visualize:
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
boxes = dt_boxes
txts = [rec_res[i][0] for i in range(len(rec_res))]
scores = [rec_res[i][1] for i in range(len(rec_res))]
draw_img = draw_ocr(
image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
draw_img_save = "./inference_results/"
2020-05-14 12:08:11 +08:00
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
cv2.imwrite(
os.path.join(draw_img_save, os.path.basename(image_file)),
2020-05-14 14:43:20 +08:00
draw_img[:, :, ::-1])
print("The visualized image saved in {}".format(
os.path.join(draw_img_save, os.path.basename(image_file))))
if __name__ == "__main__":
main(utility.parse_args())