2020-12-07 16:17:36 +08:00
|
|
|
Global:
|
|
|
|
use_gpu: true
|
|
|
|
epoch_num: 1200
|
|
|
|
log_smooth_window: 20
|
|
|
|
print_batch_step: 10
|
2020-12-11 13:27:27 +08:00
|
|
|
save_model_dir: ./output/det_r50_vd/
|
2020-12-07 16:17:36 +08:00
|
|
|
save_epoch_step: 1200
|
2020-12-16 13:06:48 +08:00
|
|
|
# evaluation is run every 2000 iterations
|
|
|
|
eval_batch_step: [0,2000]
|
2021-02-02 22:27:21 +08:00
|
|
|
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
|
|
|
# from static branch, load_static_weights must be set as True.
|
|
|
|
# 2. If you want to finetune the pretrained models we provide in the docs,
|
|
|
|
# you should set load_static_weights as False.
|
2020-12-07 16:17:36 +08:00
|
|
|
load_static_weights: True
|
|
|
|
cal_metric_during_train: False
|
2020-12-09 17:27:06 +08:00
|
|
|
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
|
2020-12-07 16:17:36 +08:00
|
|
|
checkpoints:
|
|
|
|
save_inference_dir:
|
|
|
|
use_visualdl: False
|
|
|
|
infer_img: doc/imgs_en/img_10.jpg
|
|
|
|
save_res_path: ./output/det_db/predicts_db.txt
|
|
|
|
|
|
|
|
Architecture:
|
|
|
|
model_type: det
|
|
|
|
algorithm: DB
|
|
|
|
Transform:
|
|
|
|
Backbone:
|
|
|
|
name: ResNet
|
|
|
|
layers: 50
|
|
|
|
Neck:
|
|
|
|
name: DBFPN
|
|
|
|
out_channels: 256
|
|
|
|
Head:
|
|
|
|
name: DBHead
|
|
|
|
k: 50
|
|
|
|
|
|
|
|
Loss:
|
|
|
|
name: DBLoss
|
|
|
|
balance_loss: true
|
|
|
|
main_loss_type: DiceLoss
|
|
|
|
alpha: 5
|
|
|
|
beta: 10
|
|
|
|
ohem_ratio: 3
|
|
|
|
|
|
|
|
Optimizer:
|
|
|
|
name: Adam
|
|
|
|
beta1: 0.9
|
|
|
|
beta2: 0.999
|
|
|
|
lr:
|
|
|
|
learning_rate: 0.001
|
|
|
|
regularizer:
|
|
|
|
name: 'L2'
|
|
|
|
factor: 0
|
|
|
|
|
|
|
|
PostProcess:
|
|
|
|
name: DBPostProcess
|
|
|
|
thresh: 0.3
|
|
|
|
box_thresh: 0.7
|
|
|
|
max_candidates: 1000
|
|
|
|
unclip_ratio: 1.5
|
|
|
|
|
|
|
|
Metric:
|
|
|
|
name: DetMetric
|
|
|
|
main_indicator: hmean
|
|
|
|
|
|
|
|
Train:
|
|
|
|
dataset:
|
|
|
|
name: SimpleDataSet
|
|
|
|
data_dir: ./train_data/icdar2015/text_localization/
|
|
|
|
label_file_list:
|
|
|
|
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
|
2020-12-26 23:40:24 +08:00
|
|
|
ratio_list: [1.0]
|
2020-12-07 16:17:36 +08:00
|
|
|
transforms:
|
|
|
|
- DecodeImage: # load image
|
|
|
|
img_mode: BGR
|
|
|
|
channel_first: False
|
|
|
|
- DetLabelEncode: # Class handling label
|
|
|
|
- IaaAugment:
|
|
|
|
augmenter_args:
|
|
|
|
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
|
|
|
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
|
|
|
|
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
|
|
|
|
- EastRandomCropData:
|
|
|
|
size: [640, 640]
|
|
|
|
max_tries: 50
|
|
|
|
keep_ratio: true
|
|
|
|
- MakeBorderMap:
|
|
|
|
shrink_ratio: 0.4
|
|
|
|
thresh_min: 0.3
|
|
|
|
thresh_max: 0.7
|
|
|
|
- MakeShrinkMap:
|
|
|
|
shrink_ratio: 0.4
|
|
|
|
min_text_size: 8
|
|
|
|
- NormalizeImage:
|
|
|
|
scale: 1./255.
|
|
|
|
mean: [0.485, 0.456, 0.406]
|
|
|
|
std: [0.229, 0.224, 0.225]
|
|
|
|
order: 'hwc'
|
|
|
|
- ToCHWImage:
|
|
|
|
- KeepKeys:
|
|
|
|
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
|
|
|
|
loader:
|
|
|
|
shuffle: True
|
|
|
|
drop_last: False
|
|
|
|
batch_size_per_card: 16
|
|
|
|
num_workers: 8
|
|
|
|
|
|
|
|
Eval:
|
|
|
|
dataset:
|
|
|
|
name: SimpleDataSet
|
|
|
|
data_dir: ./train_data/icdar2015/text_localization/
|
|
|
|
label_file_list:
|
|
|
|
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
|
|
|
|
transforms:
|
|
|
|
- DecodeImage: # load image
|
|
|
|
img_mode: BGR
|
|
|
|
channel_first: False
|
|
|
|
- DetLabelEncode: # Class handling label
|
|
|
|
- DetResizeForTest:
|
|
|
|
image_shape: [736, 1280]
|
|
|
|
- NormalizeImage:
|
|
|
|
scale: 1./255.
|
|
|
|
mean: [0.485, 0.456, 0.406]
|
|
|
|
std: [0.229, 0.224, 0.225]
|
|
|
|
order: 'hwc'
|
|
|
|
- ToCHWImage:
|
|
|
|
- KeepKeys:
|
|
|
|
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
|
|
|
|
loader:
|
|
|
|
shuffle: False
|
|
|
|
drop_last: False
|
|
|
|
batch_size_per_card: 1 # must be 1
|
|
|
|
num_workers: 8
|