164 lines
6.2 KiB
Python
164 lines
6.2 KiB
Python
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
class WarpMLS:
|
||
|
def __init__(self, src, src_pts, dst_pts, dst_w, dst_h, trans_ratio=1.):
|
||
|
self.src = src
|
||
|
self.src_pts = src_pts
|
||
|
self.dst_pts = dst_pts
|
||
|
self.pt_count = len(self.dst_pts)
|
||
|
self.dst_w = dst_w
|
||
|
self.dst_h = dst_h
|
||
|
self.trans_ratio = trans_ratio
|
||
|
self.grid_size = 100
|
||
|
self.rdx = np.zeros((self.dst_h, self.dst_w))
|
||
|
self.rdy = np.zeros((self.dst_h, self.dst_w))
|
||
|
|
||
|
@staticmethod
|
||
|
def __bilinear_interp(x, y, v11, v12, v21, v22):
|
||
|
return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 *
|
||
|
(1 - y) + v22 * y) * x
|
||
|
|
||
|
def generate(self):
|
||
|
self.calc_delta()
|
||
|
return self.gen_img()
|
||
|
|
||
|
def calc_delta(self):
|
||
|
w = np.zeros(self.pt_count, dtype=np.float32)
|
||
|
|
||
|
if self.pt_count < 2:
|
||
|
return
|
||
|
|
||
|
i = 0
|
||
|
while 1:
|
||
|
if self.dst_w <= i < self.dst_w + self.grid_size - 1:
|
||
|
i = self.dst_w - 1
|
||
|
elif i >= self.dst_w:
|
||
|
break
|
||
|
|
||
|
j = 0
|
||
|
while 1:
|
||
|
if self.dst_h <= j < self.dst_h + self.grid_size - 1:
|
||
|
j = self.dst_h - 1
|
||
|
elif j >= self.dst_h:
|
||
|
break
|
||
|
|
||
|
sw = 0
|
||
|
swp = np.zeros(2, dtype=np.float32)
|
||
|
swq = np.zeros(2, dtype=np.float32)
|
||
|
new_pt = np.zeros(2, dtype=np.float32)
|
||
|
cur_pt = np.array([i, j], dtype=np.float32)
|
||
|
|
||
|
k = 0
|
||
|
for k in range(self.pt_count):
|
||
|
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
|
||
|
break
|
||
|
|
||
|
w[k] = 1. / (
|
||
|
(i - self.dst_pts[k][0]) * (i - self.dst_pts[k][0]) +
|
||
|
(j - self.dst_pts[k][1]) * (j - self.dst_pts[k][1]))
|
||
|
|
||
|
sw += w[k]
|
||
|
swp = swp + w[k] * np.array(self.dst_pts[k])
|
||
|
swq = swq + w[k] * np.array(self.src_pts[k])
|
||
|
|
||
|
if k == self.pt_count - 1:
|
||
|
pstar = 1 / sw * swp
|
||
|
qstar = 1 / sw * swq
|
||
|
|
||
|
miu_s = 0
|
||
|
for k in range(self.pt_count):
|
||
|
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
|
||
|
continue
|
||
|
pt_i = self.dst_pts[k] - pstar
|
||
|
miu_s += w[k] * np.sum(pt_i * pt_i)
|
||
|
|
||
|
cur_pt -= pstar
|
||
|
cur_pt_j = np.array([-cur_pt[1], cur_pt[0]])
|
||
|
|
||
|
for k in range(self.pt_count):
|
||
|
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
|
||
|
continue
|
||
|
|
||
|
pt_i = self.dst_pts[k] - pstar
|
||
|
pt_j = np.array([-pt_i[1], pt_i[0]])
|
||
|
|
||
|
tmp_pt = np.zeros(2, dtype=np.float32)
|
||
|
tmp_pt[0] = np.sum(pt_i * cur_pt) * self.src_pts[k][0] - \
|
||
|
np.sum(pt_j * cur_pt) * self.src_pts[k][1]
|
||
|
tmp_pt[1] = -np.sum(pt_i * cur_pt_j) * self.src_pts[k][0] + \
|
||
|
np.sum(pt_j * cur_pt_j) * self.src_pts[k][1]
|
||
|
tmp_pt *= (w[k] / miu_s)
|
||
|
new_pt += tmp_pt
|
||
|
|
||
|
new_pt += qstar
|
||
|
else:
|
||
|
new_pt = self.src_pts[k]
|
||
|
|
||
|
self.rdx[j, i] = new_pt[0] - i
|
||
|
self.rdy[j, i] = new_pt[1] - j
|
||
|
|
||
|
j += self.grid_size
|
||
|
i += self.grid_size
|
||
|
|
||
|
def gen_img(self):
|
||
|
src_h, src_w = self.src.shape[:2]
|
||
|
dst = np.zeros_like(self.src, dtype=np.float32)
|
||
|
|
||
|
for i in np.arange(0, self.dst_h, self.grid_size):
|
||
|
for j in np.arange(0, self.dst_w, self.grid_size):
|
||
|
ni = i + self.grid_size
|
||
|
nj = j + self.grid_size
|
||
|
w = h = self.grid_size
|
||
|
if ni >= self.dst_h:
|
||
|
ni = self.dst_h - 1
|
||
|
h = ni - i + 1
|
||
|
if nj >= self.dst_w:
|
||
|
nj = self.dst_w - 1
|
||
|
w = nj - j + 1
|
||
|
|
||
|
di = np.reshape(np.arange(h), (-1, 1))
|
||
|
dj = np.reshape(np.arange(w), (1, -1))
|
||
|
delta_x = self.__bilinear_interp(
|
||
|
di / h, dj / w, self.rdx[i, j], self.rdx[i, nj],
|
||
|
self.rdx[ni, j], self.rdx[ni, nj])
|
||
|
delta_y = self.__bilinear_interp(
|
||
|
di / h, dj / w, self.rdy[i, j], self.rdy[i, nj],
|
||
|
self.rdy[ni, j], self.rdy[ni, nj])
|
||
|
nx = j + dj + delta_x * self.trans_ratio
|
||
|
ny = i + di + delta_y * self.trans_ratio
|
||
|
nx = np.clip(nx, 0, src_w - 1)
|
||
|
ny = np.clip(ny, 0, src_h - 1)
|
||
|
nxi = np.array(np.floor(nx), dtype=np.int32)
|
||
|
nyi = np.array(np.floor(ny), dtype=np.int32)
|
||
|
nxi1 = np.array(np.ceil(nx), dtype=np.int32)
|
||
|
nyi1 = np.array(np.ceil(ny), dtype=np.int32)
|
||
|
|
||
|
if len(self.src.shape) == 3:
|
||
|
x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3))
|
||
|
y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3))
|
||
|
else:
|
||
|
x = ny - nyi
|
||
|
y = nx - nxi
|
||
|
dst[i:i + h, j:j + w] = self.__bilinear_interp(
|
||
|
x, y, self.src[nyi, nxi], self.src[nyi, nxi1],
|
||
|
self.src[nyi1, nxi], self.src[nyi1, nxi1])
|
||
|
|
||
|
dst = np.clip(dst, 0, 255)
|
||
|
dst = np.array(dst, dtype=np.uint8)
|
||
|
|
||
|
return dst
|