72 lines
2.6 KiB
Python
72 lines
2.6 KiB
Python
|
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle import nn
|
||
|
|
||
|
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
|
||
|
|
||
|
|
||
|
class DBLoss(nn.Layer):
|
||
|
"""
|
||
|
Differentiable Binarization (DB) Loss Function
|
||
|
args:
|
||
|
param (dict): the super paramter for DB Loss
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
balance_loss=True,
|
||
|
main_loss_type='DiceLoss',
|
||
|
alpha=5,
|
||
|
beta=10,
|
||
|
ohem_ratio=3,
|
||
|
eps=1e-6,
|
||
|
**kwargs):
|
||
|
super(DBLoss, self).__init__()
|
||
|
self.alpha = alpha
|
||
|
self.beta = beta
|
||
|
self.dice_loss = DiceLoss(eps=eps)
|
||
|
self.l1_loss = MaskL1Loss(eps=eps)
|
||
|
self.bce_loss = BalanceLoss(
|
||
|
balance_loss=balance_loss,
|
||
|
main_loss_type=main_loss_type,
|
||
|
negative_ratio=ohem_ratio)
|
||
|
|
||
|
def forward(self, predicts, labels):
|
||
|
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
|
||
|
1:]
|
||
|
shrink_maps = predicts[:, 0, :, :]
|
||
|
threshold_maps = predicts[:, 1, :, :]
|
||
|
binary_maps = predicts[:, 2, :, :]
|
||
|
|
||
|
loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
|
||
|
label_shrink_mask)
|
||
|
loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
|
||
|
label_threshold_mask)
|
||
|
loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
|
||
|
label_shrink_mask)
|
||
|
loss_shrink_maps = self.alpha * loss_shrink_maps
|
||
|
loss_threshold_maps = self.beta * loss_threshold_maps
|
||
|
|
||
|
loss_all = loss_shrink_maps + loss_threshold_maps \
|
||
|
+ loss_binary_maps
|
||
|
losses = {'loss': loss_all, \
|
||
|
"loss_shrink_maps": loss_shrink_maps, \
|
||
|
"loss_threshold_maps": loss_threshold_maps, \
|
||
|
"loss_binary_maps": loss_binary_maps}
|
||
|
return losses
|