88 lines
3.2 KiB
Python
88 lines
3.2 KiB
Python
|
import paddle
|
||
|
import numpy as np
|
||
|
import copy
|
||
|
|
||
|
|
||
|
def org_tcl_rois(batch_size, pos_lists, pos_masks, label_lists, tcl_bs):
|
||
|
"""
|
||
|
"""
|
||
|
pos_lists_, pos_masks_, label_lists_ = [], [], []
|
||
|
img_bs = batch_size
|
||
|
ngpu = int(batch_size / img_bs)
|
||
|
img_ids = np.array(pos_lists, dtype=np.int32)[:, 0, 0].copy()
|
||
|
pos_lists_split, pos_masks_split, label_lists_split = [], [], []
|
||
|
for i in range(ngpu):
|
||
|
pos_lists_split.append([])
|
||
|
pos_masks_split.append([])
|
||
|
label_lists_split.append([])
|
||
|
|
||
|
for i in range(img_ids.shape[0]):
|
||
|
img_id = img_ids[i]
|
||
|
gpu_id = int(img_id / img_bs)
|
||
|
img_id = img_id % img_bs
|
||
|
pos_list = pos_lists[i].copy()
|
||
|
pos_list[:, 0] = img_id
|
||
|
pos_lists_split[gpu_id].append(pos_list)
|
||
|
pos_masks_split[gpu_id].append(pos_masks[i].copy())
|
||
|
label_lists_split[gpu_id].append(copy.deepcopy(label_lists[i]))
|
||
|
# repeat or delete
|
||
|
for i in range(ngpu):
|
||
|
vp_len = len(pos_lists_split[i])
|
||
|
if vp_len <= tcl_bs:
|
||
|
for j in range(0, tcl_bs - vp_len):
|
||
|
pos_list = pos_lists_split[i][j].copy()
|
||
|
pos_lists_split[i].append(pos_list)
|
||
|
pos_mask = pos_masks_split[i][j].copy()
|
||
|
pos_masks_split[i].append(pos_mask)
|
||
|
label_list = copy.deepcopy(label_lists_split[i][j])
|
||
|
label_lists_split[i].append(label_list)
|
||
|
else:
|
||
|
for j in range(0, vp_len - tcl_bs):
|
||
|
c_len = len(pos_lists_split[i])
|
||
|
pop_id = np.random.permutation(c_len)[0]
|
||
|
pos_lists_split[i].pop(pop_id)
|
||
|
pos_masks_split[i].pop(pop_id)
|
||
|
label_lists_split[i].pop(pop_id)
|
||
|
# merge
|
||
|
for i in range(ngpu):
|
||
|
pos_lists_.extend(pos_lists_split[i])
|
||
|
pos_masks_.extend(pos_masks_split[i])
|
||
|
label_lists_.extend(label_lists_split[i])
|
||
|
return pos_lists_, pos_masks_, label_lists_
|
||
|
|
||
|
|
||
|
def pre_process(label_list, pos_list, pos_mask, max_text_length, max_text_nums,
|
||
|
pad_num, tcl_bs):
|
||
|
label_list = label_list.numpy()
|
||
|
batch, _, _, _ = label_list.shape
|
||
|
pos_list = pos_list.numpy()
|
||
|
pos_mask = pos_mask.numpy()
|
||
|
pos_list_t = []
|
||
|
pos_mask_t = []
|
||
|
label_list_t = []
|
||
|
for i in range(batch):
|
||
|
for j in range(max_text_nums):
|
||
|
if pos_mask[i, j].any():
|
||
|
pos_list_t.append(pos_list[i][j])
|
||
|
pos_mask_t.append(pos_mask[i][j])
|
||
|
label_list_t.append(label_list[i][j])
|
||
|
pos_list, pos_mask, label_list = org_tcl_rois(batch, pos_list_t, pos_mask_t,
|
||
|
label_list_t, tcl_bs)
|
||
|
label = []
|
||
|
tt = [l.tolist() for l in label_list]
|
||
|
for i in range(tcl_bs):
|
||
|
k = 0
|
||
|
for j in range(max_text_length):
|
||
|
if tt[i][j][0] != pad_num:
|
||
|
k += 1
|
||
|
else:
|
||
|
break
|
||
|
label.append(k)
|
||
|
label = paddle.to_tensor(label)
|
||
|
label = paddle.cast(label, dtype='int64')
|
||
|
pos_list = paddle.to_tensor(pos_list)
|
||
|
pos_mask = paddle.to_tensor(pos_mask)
|
||
|
label_list = paddle.squeeze(paddle.to_tensor(label_list), axis=2)
|
||
|
label_list = paddle.cast(label_list, dtype='int32')
|
||
|
return pos_list, pos_mask, label_list, label
|