PaddleOCR/ppocr/modeling/necks/db_fpn.py

117 lines
4.2 KiB
Python
Raw Normal View History

2020-10-13 17:13:33 +08:00
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
2020-11-04 20:43:27 +08:00
class DBFPN(nn.Layer):
2020-10-13 17:13:33 +08:00
def __init__(self, in_channels, out_channels, **kwargs):
2020-11-04 20:43:27 +08:00
super(DBFPN, self).__init__()
2020-10-13 17:13:33 +08:00
self.out_channels = out_channels
2020-11-05 20:45:19 +08:00
weight_attr = paddle.nn.initializer.KaimingUniform()
2020-10-13 17:13:33 +08:00
2020-11-05 15:13:36 +08:00
self.in2_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels[0],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_51.w_0', initializer=weight_attr),
bias_attr=False)
2020-11-05 15:13:36 +08:00
self.in3_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels[1],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_50.w_0', initializer=weight_attr),
bias_attr=False)
2020-11-05 15:13:36 +08:00
self.in4_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels[2],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_49.w_0', initializer=weight_attr),
bias_attr=False)
2020-11-05 15:13:36 +08:00
self.in5_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=in_channels[3],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_48.w_0', initializer=weight_attr),
bias_attr=False)
2020-11-05 15:13:36 +08:00
self.p5_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_52.w_0', initializer=weight_attr),
bias_attr=False)
2020-11-05 15:13:36 +08:00
self.p4_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_53.w_0', initializer=weight_attr),
bias_attr=False)
2020-11-05 15:13:36 +08:00
self.p3_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_54.w_0', initializer=weight_attr),
bias_attr=False)
2020-11-05 15:13:36 +08:00
self.p2_conv = nn.Conv2D(
2020-10-13 17:13:33 +08:00
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_55.w_0', initializer=weight_attr),
bias_attr=False)
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.in5_conv(c5)
in4 = self.in4_conv(c4)
in3 = self.in3_conv(c3)
in2 = self.in2_conv(c2)
2020-11-06 18:15:44 +08:00
out4 = in4 + F.upsample(
in5, scale_factor=2, mode="nearest", align_mode=1) # 1/16
out3 = in3 + F.upsample(
out4, scale_factor=2, mode="nearest", align_mode=1) # 1/8
out2 = in2 + F.upsample(
out3, scale_factor=2, mode="nearest", align_mode=1) # 1/4
2020-10-13 17:13:33 +08:00
p5 = self.p5_conv(in5)
p4 = self.p4_conv(out4)
p3 = self.p3_conv(out3)
p2 = self.p2_conv(out2)
2020-11-06 18:15:44 +08:00
p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
2020-10-13 17:13:33 +08:00
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
return fuse