2020-10-13 17:13:33 +08:00
|
|
|
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr
|
|
|
|
|
|
|
|
|
|
|
|
class Im2Seq(nn.Layer):
|
|
|
|
def __init__(self, in_channels, **kwargs):
|
|
|
|
super().__init__()
|
|
|
|
self.out_channels = in_channels
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, C, H, W = x.shape
|
2020-11-10 17:18:50 +08:00
|
|
|
assert H == 1
|
|
|
|
x = x.squeeze(axis=2)
|
|
|
|
x = x.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
|
2020-10-13 17:13:33 +08:00
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class EncoderWithRNN(nn.Layer):
|
|
|
|
def __init__(self, in_channels, hidden_size):
|
|
|
|
super(EncoderWithRNN, self).__init__()
|
|
|
|
self.out_channels = hidden_size * 2
|
|
|
|
self.lstm = nn.LSTM(
|
|
|
|
in_channels, hidden_size, direction='bidirectional', num_layers=2)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x, _ = self.lstm(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class EncoderWithFC(nn.Layer):
|
|
|
|
def __init__(self, in_channels, hidden_size):
|
|
|
|
super(EncoderWithFC, self).__init__()
|
|
|
|
self.out_channels = hidden_size
|
|
|
|
weight_attr, bias_attr = get_para_bias_attr(
|
|
|
|
l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea')
|
|
|
|
self.fc = nn.Linear(
|
|
|
|
in_channels,
|
|
|
|
hidden_size,
|
|
|
|
weight_attr=weight_attr,
|
|
|
|
bias_attr=bias_attr,
|
|
|
|
name='reduce_encoder_fea')
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.fc(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SequenceEncoder(nn.Layer):
|
2020-10-16 16:39:37 +08:00
|
|
|
def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
|
2020-10-13 17:13:33 +08:00
|
|
|
super(SequenceEncoder, self).__init__()
|
2020-10-20 16:07:19 +08:00
|
|
|
self.encoder_reshape = Im2Seq(in_channels)
|
2020-10-13 17:13:33 +08:00
|
|
|
self.out_channels = self.encoder_reshape.out_channels
|
|
|
|
if encoder_type == 'reshape':
|
|
|
|
self.only_reshape = True
|
|
|
|
else:
|
|
|
|
support_encoder_dict = {
|
2020-10-20 16:07:19 +08:00
|
|
|
'reshape': Im2Seq,
|
2020-10-13 17:13:33 +08:00
|
|
|
'fc': EncoderWithFC,
|
|
|
|
'rnn': EncoderWithRNN
|
|
|
|
}
|
2020-11-10 17:18:50 +08:00
|
|
|
assert encoder_type in support_encoder_dict, '{} must in {}'.format(
|
|
|
|
encoder_type, support_encoder_dict.keys())
|
2020-10-13 17:13:33 +08:00
|
|
|
|
|
|
|
self.encoder = support_encoder_dict[encoder_type](
|
|
|
|
self.encoder_reshape.out_channels, hidden_size)
|
|
|
|
self.out_channels = self.encoder.out_channels
|
|
|
|
self.only_reshape = False
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.encoder_reshape(x)
|
|
|
|
if not self.only_reshape:
|
|
|
|
x = self.encoder(x)
|
|
|
|
return x
|