PaddleOCR/ppocr/losses/table_att_loss.py

109 lines
4.5 KiB
Python
Raw Normal View History

2021-06-16 16:47:33 +08:00
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
from paddle.nn import functional as F
from paddle import fluid
class TableAttentionLoss(nn.Layer):
def __init__(self, structure_weight, loc_weight, use_giou=False, giou_weight=1.0, **kwargs):
super(TableAttentionLoss, self).__init__()
self.loss_func = nn.CrossEntropyLoss(weight=None, reduction='none')
self.structure_weight = structure_weight
self.loc_weight = loc_weight
self.use_giou = use_giou
self.giou_weight = giou_weight
def giou_loss(self, preds, bbox, eps=1e-7, reduction='mean'):
'''
:param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
:param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
:return: loss
'''
ix1 = fluid.layers.elementwise_max(preds[:, 0], bbox[:, 0])
iy1 = fluid.layers.elementwise_max(preds[:, 1], bbox[:, 1])
ix2 = fluid.layers.elementwise_min(preds[:, 2], bbox[:, 2])
iy2 = fluid.layers.elementwise_min(preds[:, 3], bbox[:, 3])
iw = fluid.layers.clip(ix2 - ix1 + 1e-3, 0., 1e10)
ih = fluid.layers.clip(iy2 - iy1 + 1e-3, 0., 1e10)
# overlap
inters = iw * ih
# union
uni = (preds[:, 2] - preds[:, 0] + 1e-3) * (preds[:, 3] - preds[:, 1] + 1e-3
) + (bbox[:, 2] - bbox[:, 0] + 1e-3) * (
bbox[:, 3] - bbox[:, 1] + 1e-3) - inters + eps
# ious
ious = inters / uni
ex1 = fluid.layers.elementwise_min(preds[:, 0], bbox[:, 0])
ey1 = fluid.layers.elementwise_min(preds[:, 1], bbox[:, 1])
ex2 = fluid.layers.elementwise_max(preds[:, 2], bbox[:, 2])
ey2 = fluid.layers.elementwise_max(preds[:, 3], bbox[:, 3])
ew = fluid.layers.clip(ex2 - ex1 + 1e-3, 0., 1e10)
eh = fluid.layers.clip(ey2 - ey1 + 1e-3, 0., 1e10)
# enclose erea
enclose = ew * eh + eps
giou = ious - (enclose - uni) / enclose
loss = 1 - giou
if reduction == 'mean':
loss = paddle.mean(loss)
elif reduction == 'sum':
loss = paddle.sum(loss)
else:
raise NotImplementedError
return loss
def forward(self, predicts, batch):
structure_probs = predicts['structure_probs']
structure_targets = batch[1].astype("int64")
structure_targets = structure_targets[:, 1:]
if len(batch) == 6:
structure_mask = batch[5].astype("int64")
structure_mask = structure_mask[:, 1:]
structure_mask = paddle.reshape(structure_mask, [-1])
structure_probs = paddle.reshape(structure_probs, [-1, structure_probs.shape[-1]])
structure_targets = paddle.reshape(structure_targets, [-1])
structure_loss = self.loss_func(structure_probs, structure_targets)
if len(batch) == 6:
structure_loss = structure_loss * structure_mask
# structure_loss = paddle.sum(structure_loss) * self.structure_weight
structure_loss = paddle.mean(structure_loss) * self.structure_weight
loc_preds = predicts['loc_preds']
loc_targets = batch[2].astype("float32")
loc_targets_mask = batch[4].astype("float32")
loc_targets = loc_targets[:, 1:, :]
loc_targets_mask = loc_targets_mask[:, 1:, :]
loc_loss = F.mse_loss(loc_preds * loc_targets_mask, loc_targets) * self.loc_weight
if self.use_giou:
loc_loss_giou = self.giou_loss(loc_preds * loc_targets_mask, loc_targets) * self.giou_weight
total_loss = structure_loss + loc_loss + loc_loss_giou
return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss, "loc_loss_giou":loc_loss_giou}
else:
total_loss = structure_loss + loc_loss
return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss}